首页> 外文期刊>Journal of supercomputing >Ensemble hill climbing optimization in adaptive cruise control for safe automated vehicle transportation
【24h】

Ensemble hill climbing optimization in adaptive cruise control for safe automated vehicle transportation

机译:安全自动化车辆运输自适应巡航控制中的合奏山攀岩优化

获取原文
获取原文并翻译 | 示例

摘要

Road traffic crashes are currently one of the leading causes of death. Many accidents occur when the attention of a driver is diverted owing to fatigue or external factors. Adaptive cruise control (ACC) is a driver assistance system for safe vehicle transportation by combining a safe following distance with speed regulation. However, existing ACC systems fail to control the braking system when the preceding vehicle applies full brakes that can cause a jerk or collision. In addition, current ACC systems fail to consider road elevation and spatiotemporal problems that cause tracking errors. The existing issues result in high fuel consumption, discomfort during travel, and high error rates. To overcome these issues, a "Combinatorial Repeated Local Search and Simulated Annealing-Based Hill Climbing Optimization" (CRLSSA-HCO) technique is introduced for ACC with a predictive controller. In this technique, two models are introduced, namely the repeated local search-based hill climbing optimization (RLS-HCO) model, and the simulated annealing-based hill climbing optimization (SA-HCO) model. The RLS-HCO model performs local search optimization to avoid vehicle jerks and collisions by maintaining a safe distance between vehicles on a horizontal road. The RLS-HCO model operates in a spacing control mode and a speed control mode to maintain the safe distance. The input and control variables are optimized by performing a repeated local search, thereby reducing the fuel consumption and error rate. The SA-HCO model performs a global search optimization for avoiding traffic and addresses the spatiotemporal problems on hilly roads. The SA-HCO model optimizes the engine speed, engine torque, and gear ratio by using simulated annealing for reducing the fuel consumption and error rate. An experimental evaluation of the CRLSSA-HCO technique is carried out using performance metrics such as fuel consumption, distance error, and speed error, which are compared to those of state-of-the-art studies.
机译:道路交通崩溃目前是导致死亡原因之一。由于驾驶员的注意因疲劳或外部因素而被转移时,发生了许多事故。自适应巡航控制(ACC)是一种用于安全车辆运输的驾驶员辅助系统,通过与速度调节相结合。然而,当前车辆适用可能导致混蛋或碰撞的全刹车时,现有的ACC系统无法控制制动系统。此外,当前的ACC系统无法考虑道路仰角和时尚问题,导致跟踪错误。现有问题导致旅行期间的燃料消耗,不适,以及高误差率。为了克服这些问题,引入了具有预测控制器的ACC的“组合重复本地搜索和模拟的基于退火的山攀爬优化”(CRLSA-HCO)技术。在这种技术中,引入了两种模型,即重复的基于地方搜索的山攀爬优化(RLS-HCO)模型,以及基于模拟的退火的山攀爬优化(SA-HCO)模型。 RLS-HCO模型执行本地搜索优化,以避免车辆混凝土和碰撞,通过在水平道路上维持车辆之间的安全距离。 RLS-HCO模型以间距控制模式和速度控制模式运行,以保持安全距离。通过执行重复的本地搜索来优化输入和控制变量,从而降低燃料消耗和错误率。 SA-HCO模型对避免流量进行全球搜索优化,并解决丘陵道路上的时空问题。 SA-HCO模型通过使用模拟退火来优化发动机速度,发动机扭矩和齿轮比以降低燃料消耗和错误率。使用燃料消耗,距离误差和速度误差等性能度量进行CRLSA-HCO技术的实验评估,这些测量与最先进的研究相比。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号