首页> 外文期刊>Journal of supercomputing >A segregational approach for determining aspect sentiments in social media analysis
【24h】

A segregational approach for determining aspect sentiments in social media analysis

机译:用于确定社交媒体分析方面情绪的分离方法

获取原文
获取原文并翻译 | 示例

摘要

Aspect-based sentiment analysis is an emerging field of research that evaluates people's views, ideas or sentiments. It is a subtask of sentiment analysis that is used to identify text sentiment orientation towards different aspects of a mobile phone such as camera and screen resolution. During the last decade, research community focused on identifying and extracting aspects like the most common methods used for aspect extraction to identify the main features of an entity only. These techniques are corpus or lexicon based and domain specific. Some approaches for aspect extraction are based on term frequency and inverse document frequency. Such approaches are quite good if aspects are associated with predefined categories and may fail if low-frequency aspects are concerned. The heuristic-based approaches are better than frequency and lexicon-based approaches in terms of accuracy, but due to the different combinations of features, they consumed time. The researchers have already implemented machine learning techniques to analyse sentiments present in the given document. But, execution time for these techniques increases due to the increasing aspects in a set of data. Also, irrelevant and redundant aspects participate in determining the sentiment of the given document, thereby varying the accuracy of the algorithm. In this research, we present a segregational approach for aspect identification that is based on aspect and opinion words disentangling and aspect refinement using concept similarity. To obtain better accuracy, we also built a set of part of speech tagger and integrated it with our proposed technique. The experimental analysis reveals that our proposed technique outperforms the existing counterparts.
机译:基于方面的情绪分析是一种新兴的研究领域,评估人们的观点,想法或情绪。它是一种情绪分析的子任务,用于识别对移动电话的不同方面的文本情感方向,例如相机和屏幕分辨率。在过去十年中,研究社区专注于识别和提取等方面,例如用于方面提取的最常用方法,以确定实体的主要特征。这些技术是基于语料库或基于词汇和域的域。方面提取的一些方法基于术语频率和逆文档频率。如果方面与预定义类别相关联,则这种方法非常好,并且如果关注低频方面,则可能失败。基于启发式的方法在准确性方面优于频率和基于词汇的方法,但由于特征的组合不同,它们消耗了时间。研究人员已经实施了机器学习技术,以分析给定文件中存在的情绪。但是,由于一组数据中的增加,这些技术的执行时间增加。此外,无关紧要和冗余方面参与确定给定文件的情绪,从而改变算法的准确性。在这项研究中,我们提出了一种散对识别的分离方法,其基于方面和意见单词解开和使用概念相似性的方面改进。为了获得更好的准确性,我们还建立了一系列的语音标记器,并通过我们提出的技术集成了它。实验分析表明,我们所提出的技术优于现有的对应物。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号