首页> 外文期刊>Journal of supercomputing >Improving NMF-based community discovery using distributed robust nonnegative matrix factorization with SimRank similarity measure
【24h】

Improving NMF-based community discovery using distributed robust nonnegative matrix factorization with SimRank similarity measure

机译:使用具有SimRank相似性度量的分布式健壮非负矩阵分解来改善基于NMF的社区发现

获取原文
获取原文并翻译 | 示例

摘要

Nonnegative matrix factorization (NMF) has become a powerful model for community discovery in complex networks. Existing NMF-based methods for community discovery often factorize the corresponding adjacent matrix of complex networks to obtain its community indicator matrix. However, the adjacent matrix cannot represent the global structure feature of complex networks very well, and this leads to the performance degradation of community discovery. Besides, most of existing methods are not robust and scalable enough, so they are not effective to deal with complex networks with noises and large scales. Aiming at these problems above, in this paper we propose a method for community discovery using distributed robust NMF with SimRank similarity measure. This method selects SimRank measure to construct the feature matrix, which can more accurately represent the global structure feature of complex networks. To improve the robustness, we select $$ell _{2,1}$$ ℓ 2 , 1 norm instead of the widely used Frobenius norm to construct its NMF-based community discovery model. In addition, to improve the scalability, we implement its key components by using MapReduce distributed computing framework, including computing SimRank feature matrix and iteratively solving the NMF-based model for community discovery. We conduct extensive experiments on several typical complex networks. The results show that our method has better performance and robustness than other representative NMF-based methods for community discovery. Moreover, our method presents good scalability and hence can be used to discover communities in the large-scale complex networks.
机译:非负矩阵分解(NMF)已成为复杂网络中社区发现的强大模型。现有的基于NMF的社区发现方法通常会分解复杂网络的相应相邻矩阵,以获得其社区指标矩阵。但是,相邻矩阵不能很好地表示复杂网络的全局结构特征,这导致社区发现的性能下降。此外,大多数现有方法不够健壮和可扩展性,因此它们不能有效地处理带有噪声和大规模的复杂网络。针对上述问题,本文提出了一种使用具有SimRank相似性度量的分布式健壮NMF进行社区发现的方法。该方法选择SimRank度量来构建特征矩阵,可以更准确地表示复杂网络的全局结构特征。为了提高鲁棒性,我们选择$$ ell _ {2,1} $$ℓ2,1范数,而不是广泛使用的Frobenius范数来构建其基于NMF的社区发现模型。此外,为了提高可伸缩性,我们使用MapReduce分布式计算框架(包括计算SimRank特征矩阵)并迭代求解基于NMF的社区发现模型来实现其关键组件。我们在几个典型的复杂网络上进行了广泛的实验。结果表明,与其他基于NMF的代表性社区发现方法相比,我们的方法具有更好的性能和鲁棒性。此外,我们的方法具有良好的可伸缩性,因此可用于发现大型复杂网络中的社区。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号