首页> 外文期刊>Journal of statistical computation and simulation >Bayesian analysis of non-homogeneous hidden Markov models
【24h】

Bayesian analysis of non-homogeneous hidden Markov models

机译:非齐次隐马尔可夫模型的贝叶斯分析

获取原文
获取原文并翻译 | 示例

摘要

Bayesian estimation of the unknown parameters of a non-homogeneous Gaussian hidden Markov model is described here. The hidden Markov chain presents time-varying transition probabilities, depending on exogenous variables through a logistic function. Bayesian model choice is also proposed to select the unknown number of states of the hidden non-homogeneous Markov chain. Both the analyses are developed by using Markov chain Monte Carlo algorithms. Model selection and parameter estimation are performed after making the model identifiable, by selecting suitable constraints through a data-driven procedure. The methodology is illustrated by an empirical analysis of ozone data.
机译:这里描述了非齐次高斯隐马尔可夫模型的未知参数的贝叶斯估计。隐藏的马尔可夫链呈现出随时间变化的转移概率,这取决于通过逻辑函数的外生变量。还提出了贝叶斯模型选择,以选择隐藏的非均匀马尔可夫链的未知数量的状态。两种分析都是通过使用马尔可夫链蒙特卡洛算法进行的。通过使数据驱动程序选择合适的约束条件,可以在使模型可识别之后执行模型选择和参数估计。通过对臭氧数据的经验分析来说明该方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号