首页> 外文期刊>Journal of statistical computation and simulation >Variance estimates and hypothesis tests in least absolute value regression
【24h】

Variance estimates and hypothesis tests in least absolute value regression

机译:至少绝对值回归的方差估计和假设检验

获取原文
获取原文并翻译 | 示例

摘要

This study uses Monte Carlo simulation to examine variance estimators for the coefficient estimates in least absolute value (LAV) regression. Variance estimators examined in this article are based on a procedure suggested by McKean and Schrader [McKean, J. and Schrader, R., 1987, Least absolute errors analysis of variance In: Dodge, Y. (Ed.) Statistical Data Analysis Based on the L_1-Norm and Related Methods, pp. 297-305.]. The variance estimates are used in significance tests for LAV regression coefficients. The resulting tests are compared on the basis of observed level of significance and power, and the test performance is used as a guide to choice of the variance estimate. Two of the factors in the Monte Carlo simulation, sample size and number of independent variables, are investigated over a wider range of values than in previous studies. The preferred variance estimator differs slightly from the one typically recommended in recent literature.
机译:这项研究使用蒙特卡洛模拟来检查方差估计量,以估计至少绝对值(LAV)回归的系数。本文研究的方差估计量基于McKean和Schrader建议的程序[McKean,J.和Schrader,R.,1987,方差的最小绝对误差分析,在:Dodge,Y.(Ed。)统计数据分析基于[L_1-规范和相关方法,第297-305页]。方差估计用于LAV回归系数的显着性检验。在观察到的显着性和功效水平的基础上对所得测试进行比较,并将测试性能用作选择方差估计的指南。与以前的研究相比,在更大的数值范围内研究了蒙特卡洛模拟中的两个因素,即样本大小和自变量数量。首选方差估算器与最近文献中通常推荐的方差估算器略有不同。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号