首页> 外文期刊>Journal of statistical computation and simulation >Using the EM algorithm for Bayesian variable selection in logistic regression models with related covariates
【24h】

Using the EM algorithm for Bayesian variable selection in logistic regression models with related covariates

机译:使用EM算法在具有相关协变量的逻辑回归模型中进行贝叶斯变量选择

获取原文
获取原文并翻译 | 示例

摘要

We develop a Bayesian variable selection method for logistic regression models that can simultaneously accommodate qualitative covariates and interaction terms under various heredity constraints. We use expectation-maximization variable selection (EMVS) with a deterministic annealing variant as the platform for our method, due to its proven flexibility and efficiency. We propose a variance adjustment of the priors for the coefficients of qualitative covariates, which controls false-positive rates, and a flexible parameterization for interaction terms, which accommodates user-specified heredity constraints. This method can handle all pairwise interaction terms as well as a subset of specific interactions. Using simulation, we show that this method selects associated covariates better than the grouped LASSO and the LASSO with heredity constraints in various exploratory research scenarios encountered in epidemiological studies. We apply our method to identify genetic and non-genetic risk factors associated with smoking experimentation in a cohort of Mexican-heritage adolescents.
机译:我们为逻辑回归模型开发了一种贝叶斯变量选择方法,该方法可以在各种遗传约束下同时容纳定性协变量和交互项。我们使用具有确定性退火变量的期望最大化变量选择(EMVS)作为我们方法的平台,这是因为它具有经过验证的灵活性和效率。我们建议对定性协变量的系数进行先验方差调整,以控制假阳性率,并对交互项进行灵活的参数化,以适应用户指定的遗传约束。此方法可以处理所有成对的交互作用项以及特定交互作用的子集。通过仿真,我们表明,在流行病学研究中遇到的各种探索性研究场景中,该方法比分组的LASSO和具有遗传约束的LASSO更好地选择了相关协变量。我们应用我们的方法来识别与墨西哥遗传性青少年队列中的吸烟实验相关的遗传和非遗传危险因素。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号