首页> 外文期刊>Statistics and computing >An adaptive MCMC method for Bayesian variable selection in logistic and accelerated failure time regression models
【24h】

An adaptive MCMC method for Bayesian variable selection in logistic and accelerated failure time regression models

机译:一种自适应MCMC方法,用于逻辑和加速故障时间回归模型中的贝叶斯变量选择

获取原文
获取原文并翻译 | 示例

摘要

Bayesian variable selection is an important method for discovering variables which are most useful for explaining the variation in a response. The widespread use of this method has been restricted by the challenging computational problem of sampling from the corresponding posterior distribution. Recently, the use of adaptive Monte Carlo methods has been shown to lead to performance improvement over traditionally used algorithms in linear regression models. This paper looks at applying one of these algorithms (the adaptively scaled independence sampler) to logistic regression and accelerated failure time models. We investigate the use of this algorithm with data augmentation, Laplace approximation and the correlated pseudo-marginal method. The performance of the algorithms is compared on several genomic data sets.
机译:贝叶斯变量选择是发现最有用的变量的重要方法,这些方法对于解释响应的变化。这种方法的广泛使用已经受到相应后分布采样的挑战性计算问题。最近,已经显示了使用自适应蒙特卡罗方法,导致线性回归模型中传统使用的算法的性能改进。本文介绍将这些算法(自适应缩放的独立采样器)应用于逻辑回归和加速故障时间模型。我们调查使用该算法的数据增强,拉普拉斯近似和相关的伪边缘方法。在若干基因组数据集中比较了算法的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号