首页> 外文期刊>Journal of signal processing systems for signal, image, and video technology >FPGA-Based Vision Processing System for Automatic Online Player Tracking in Indoor Sports
【24h】

FPGA-Based Vision Processing System for Automatic Online Player Tracking in Indoor Sports

机译:基于FPGA的视觉处理系统,用于室内运动的自动在线选手跟踪

获取原文
获取原文并翻译 | 示例

摘要

In recent years, there has been an increasing growth of using vision-based systems for tracking the players in team sports to evaluate and enhance their performance. Player tracking using vision systems is a very challenging task due to the nature of sports games, which includes severe and frequent interactions (e.g. occlusions) between the players. Additionally, these vision systems have high computational demands since they require processing of a huge amount of video data based on the utilization of multiple cameras with high resolution and high frame rate. As a result, most of the existing systems based on general-purpose computers are not able to perform online real-time player tracking, but track the players offline using pre-recorded video files, limiting, e.g., direct feedback on the player performance during the game. In this paper, we present a reconfigurable system to track the players in indoor sports automatically and without user interaction. The proposed system performs real-time processing of the incoming video streams from the cameras, achieving online player tracking. The teams are identified, and the players' positions are detected based on the colors of their jerseys. FPGA technology is used to handle the compute-intensive vision processing tasks by implementing the video acquisition, video preprocessing, player segmentation, and team identification & player detection modules in hardware, realizing an online real-time system. While the pixel processing is performed in the FPGA, the less compute-intensive player tracking is performed on a general purpose computer. The maximum achieved frame rate for the FPGA implementation is 96.7 fps using a mature Xilinx Virtex-4 FPGA, and can be increased to 136.4 fps using a Xilinx Virtex-7 device. The Player tracking requires an average time of 2.5 ms per frame in the host-PC. As a result, the proposed reconfigurable system supports a maximum frame rate of 78.9 fps using two cameras with a resolution of 1392 x 1040 pixels each. Our results show that the achieved average precision and recall for player detection are up to 84.02% and 96.6%, respectively. Including player tracking, the achieved average precision and recall are up to 94.85% and 94.72%, respectively. Using the proposed FPGA implementation, a speedup by a factor of 15.2 is achieved compared to an OpenCV-based software implementation on a PC equipped with a 2.93 GHz Intel i7-870 CPU.
机译:近年来,使用基于视觉的系统来跟踪团队运动中的球员以评估和提高他们的表现的情况正在增长。由于体育游戏的本质,使用视觉系统的玩家跟踪是一项非常具有挑战性的任务,其中包括玩家之间频繁且频繁的互动(例如,遮挡)。另外,这些视觉系统具有很高的计算需求,因为它们需要基于高分辨率和高帧频的多个摄像机的使用来处理大量视频数据。结果,大多数基于通用计算机的现有系统不能执行在线实时播放器跟踪,而是使用预先录制的视频文件来离线跟踪播放器,从而限制了例如在播放过程中对播放器性能的直接反馈。游戏。在本文中,我们提出了一种可重新配置的系统,可以自动跟踪室内运动中的玩家,而无需用户交互。所提出的系统对来自摄像机的输入视频流进行实时处理,从而实现在线播放器跟踪。确定球队,并根据其球衣的颜色检测球员的位置。 FPGA技术通过在硬件中实现视频采集,视频预处理,玩家细分以及团队识别和玩家检测模块来实现在线实时系统,从而用于处理计算密集型视觉处理任务。虽然在FPGA中执行像素处理,但在通用计算机上执行的计算强度较低的播放器跟踪却在执行。使用成熟的Xilinx Virtex-4 FPGA,FPGA实施的最大帧速率为96.7 fps,使用Xilinx Virtex-7器件可以提高到136.4 fps。播放器跟踪在主机PC中每帧平均需要2.5毫秒的时间。结果,所提出的可重配置系统使用两台分辨率分别为1392 x 1040像素的摄像机,支持78.9 fps的最大帧速率。我们的结果表明,玩家检测的平均准确率和查全率分别达到84.02%和96.6%。包括玩家追踪在内,平均准确率和召回率分别高达94.85%和94.72%。与配备2.93 GHz Intel i7-870 CPU的PC上基于OpenCV的软件实现相比,使用建议的FPGA实现,可将速度提高15.2倍。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号