首页> 外文期刊>Journal of Scientific Computing >Entropy Stable Space-Time Discontinuous Galerkin Schemes with Summation-by-Parts Property for Hyperbolic Conservation Laws
【24h】

Entropy Stable Space-Time Discontinuous Galerkin Schemes with Summation-by-Parts Property for Hyperbolic Conservation Laws

机译:双曲守恒律具有部分性质相加的熵稳定时空不连续Galerkin方案

获取原文
获取原文并翻译 | 示例

摘要

This work examines the development of an entropy conservative (for smooth solutions) or entropy stable (for discontinuous solutions) space-time discontinuous Galerkin (DG) method for systems of nonlinear hyperbolic conservation laws. The resulting numerical scheme is fully discrete and provides a bound on the mathematical entropy at any time according to its initial condition and boundary conditions. The crux of the method is that discrete derivative approximations in space and time are summation-by-parts (SBP) operators. This allows the discrete method to mimic results from the continuous entropy analysis and ensures that the complete numerical scheme obeys the second law of thermodynamics. Importantly, the novel method described herein does not assume any exactness of quadrature in the variational forms that naturally arise in the context of DG methods. Typically, the development of entropy stable schemes is done on the semidiscrete level ignoring the temporal dependence. In this work, we demonstrate that creating an entropy stable DG method in time is similar to the spatial discrete entropy analysis, but there are important (and subtle) differences. Therefore, we highlight the temporal entropy analysis throughout this work. For the compressible Euler equations, the preservation of kinetic energy is of interest besides entropy stability. The construction of kinetic energy preserving (KEP) schemes is, again, typically done on the semidiscrete level similar to the construction of entropy stable schemes. We present a generalization of the KEP condition from Jameson to the space-time framework and provide the temporal components for both entropy stability and kinetic energy preservation. The properties of the space-time DG method derived herein are validated through numerical tests for the compressible Euler equations. Additionally, we provide, in appendices, how to construct the temporal entropy stable components for the shallow water or ideal magnetohydrodynamic (MHD) equations.
机译:这项工作研究了非线性双曲守恒定律系统的熵保守(对于光滑解)或熵稳定(对于不连续解)时空不连续伽勒金(DG)方法的发展。所得的数值方案是完全离散的,并根据其初始条件和边界条件随时为数学熵提供界限。该方法的症结在于,空间和时间上的离散导数逼近是部分求和(SBP)运算符。这允许离散方法模拟连续熵分析的结果,并确保完整的数值方案服从热力学第二定律。重要的是,本文所述的新颖方法不假定在DG方法的情况下自然产生的变分形式中的正交的任何精确度。通常,熵稳定方案的开发是在半离散级别上完成的,而忽略了时间依赖性。在这项工作中,我们证明了及时创建熵稳定的DG方法与空间离散熵分析相似,但是存在重要(且细微)差异。因此,我们在整个工作中着重进行时间熵分析。对于可压缩的Euler方程,除熵稳定性外,动能的保持也很重要。同样,动能保存(KEP)方案的构造通常在半离散级别上完成,类似于熵稳定方案的构造。我们提出了从詹姆森到时空框架的KEP条件的一般化,并提供了熵稳定性和动能守恒的时间成分。通过对可压缩的欧拉方程进行数值测试,验证了本文导出的时空DG方法的特性。此外,我们在附录中提供了如何为浅水或理想磁流体动力学(MHD)方程构造时间熵稳定分量。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号