首页> 外文期刊>Journal of Real-Time Image Processing >Real-time automated video highlight generation with dual-stream hierarchical growing self-organizing maps
【24h】

Real-time automated video highlight generation with dual-stream hierarchical growing self-organizing maps

机译:实时自动视频突出显示生成双流分层生长自组织地图

获取原文
获取原文并翻译 | 示例

摘要

Video has rapidly become one of the most common sources of visual information transfer. The number of videos uploaded to YouTube in a single day is estimated to take over 82 years to watch. Automated tools and techniques for analyzing and understanding video content, thus, have become an essential requirement. This paper addresses the problem of video highlight generation for large video files. We propose a novel skimming-based unsupervised video highlight generation method utilizing statistical image processing and data clustering, which process frame-level static and dynamic features of input video in two streams. The dynamic feature stream is represented by computing a dense optical flow for each consecutive frame, providing instantaneous velocity information for every pixel, which is then characterized by a per-frame orientation histogram, weighted by the norm, with orientations quantized. To process multi-scene videos, we utilize the divisive hierarchical clustering capability of growing self-organizing map (GSOM) using a dual-step top-down hierarchical approach in which the first level consists of clustering of spatial and temporal features of the video and in the second level, each parent cluster is hierarchically subdivided into child clusters using GSOM. The video highlight generation process is conducted real time by evaluating segments of video snippets based on a pre-defined time interval. We demonstrate the accuracy, robustness and the quality of highlights generated using a qualitative analysis conducted using 1625 human experts on highlights generated from two datasets. Further, we conduct a runtime analysis to demonstrate the efficient processing capability of the proposed method, to be used in real-time settings.
机译:视频已迅速成为视觉信息传输最常见的源之一。估计在一天内上传到YouTube的视频数量超过82年才能观看。因此,用于分析和理解视频内容的自动化工具和技术已成为必不可少的要求。本文讨论了大型视频文件的视频突出显示的问题。我们提出了一种利用统计图像处理和数据聚类的新型淘汰的无监督视频亮起生成方法,该数据集群处理了两个流中输入视频的帧级静态和动态特征。通过计算每个连续帧的密集光流来表示动态特征流,为每个像素提供瞬时速度信息,然后为每个像素的特征在于由常规的每个帧方向直方图,其具有量化的方向。要处理多场景视频,我们使用使用双步自上而下的分层方法使用生长自组织地图(GSOM)的分隔分层聚类功能,其中第一级别由视频的空间和时间特征组成在第二级,每个父群集使用GSOM分层分层分级为子集群。通过基于预定定义的时间间隔评估视频片段的段来进行视频突出显示过程实时进行。我们展示了使用使用1625人专家在两个数据集生成的亮点上使用1625人专家进行的定性分析产生的精度,鲁棒性和质量。此外,我们进行运行时分析以证明所提出的方法的有效处理能力,用于实时设置。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号