首页> 外文期刊>IEEE transactions on industrial informatics >Hierarchical Two-Stream Growing Self-Organizing Maps With Transience for Human Activity Recognition
【24h】

Hierarchical Two-Stream Growing Self-Organizing Maps With Transience for Human Activity Recognition

机译:分层两流越来越多的自组织地图,具有人类活动识别的障碍

获取原文
获取原文并翻译 | 示例

摘要

The rapid growth in autonomous industrial environments has increased the need for intelligent video surveillance. As a predominant element of video surveillance, recognition of complex human movements is important in a wide range of surveillance applications. However, the current state-of-the-art video surveillance techniques use supervised deep learning pipelines for human activity recognition (HAR). A key shortcoming of such techniques is the inability to learn from unlabeled video streams. To operate effectively in natural environments, video surveillance techniques have to be able to handle huge volumes of unlabeled video data, monitor and generate alerts and insights derived from multiple characteristics such as spatial structure, motion flow, color distribution, etc. Furthermore, most conventional learning systems lack memory persistence capability which can reduce the influence of outdated information in memory-guided decision-making resulting in limiting plasticity and overfitting based on specific past events. In this article, we propose a new adaptation of the Growing Self-Organizing Map (GSOM) to address these shortcomings by 1) adopting two proven concepts of traditional deep learning, hierarchical, and multistream learning, applied into GSOM self-structuring architecture to accommodate learning from unlabeled video data and their diverse characteristics, 2) address overfitting and the influence of outdated information on neural architecture by implementing a transience property in the algorithm. We demonstrate the proposed model using three benchmark video datasets and the results confirm its validity and usability for HAR.
机译:自主工业环境的快速增长增加了对智能视频监控的需求。作为视频监控的主要元素,对复杂人类运动的识别在各种监视应用中是重要的。然而,目前的最先进的视频监控技术使用监督深度学习管道用于人类活动识别(HAR)。这种技术的关键缺点是无法从未标记的视频流中学习。为了在自然环境中有效运行,视频监控技术必须能够处理大量的未标记视频数据,监控和生成从多种特征的警报和洞察力,例如空间结构,运动流,颜色分布等。此外,最传统的学习系统缺乏记忆持久性能力,可以减少过时信息在内存引导决策中的影响,从而限制了基于特定过去事件的可塑性和过度选择。在本文中,我们建议新的自组织地图(GSOM)改编,以解决这些缺点1)采用两种经过验证的传统深度学习,分层和多级学习的概念,应用于GSOM自我结构化建筑以适应从未标记的视频数据和各种特征学习,2)通过在算法中实现瞬态属性来解决过度装备和过时信息对神经架构的影响。我们使用三个基准视频数据集演示所提出的模型,结果证实了Har的有效性和可用性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号