首页> 外文期刊>Journal of Real-Time Image Processing >Toward a robust and fast real-time point cloud registration with factor analysis and Student's-f mixture model
【24h】

Toward a robust and fast real-time point cloud registration with factor analysis and Student's-f mixture model

机译:对具有因子分析和学生-F混合模型的强大和快速实时点云注册

获取原文
获取原文并翻译 | 示例

摘要

Three-dimensional (3D) point cloud registration generally involves in unsatisfied situations like Gaussian white noise, data missing and disorder in affine. This paper proposes a robust and real-time point cloud registration, which combines the Student's-t mixture model (SMM) with factor analysis. The proposed method extending the point cloud mathematical model to the orthogonal factor model and employs the SMM to fit the point cloud data, because the degree of freedom of Student's t-distribution makes it more flexible in fitting the probability distribution of data. Since the Expectation Maximization (EM) algorithm has a stable estimation ability for the mixture model, the EM algorithm is used to estimate the factor load matrix. The filed data and experimental results show that the proposed algorithm can achieve accurate registration and fast convergence even in the case of point cloud disorder, data occlusion, incomplete loss and noise.
机译:三维(3D)点云登记一般涉及在高斯白噪声,数据缺失和仿射紊乱等不满足的情况下。本文提出了一种强大而实时点云注册,其将学生-T混合模型(SMM)与因子分析相结合。所提出的方法将点云数学模型扩展到正交因子模型,采用SMM适合点云数据,因为学生的T分布的自由度使其更加灵活地拟合数据的概率分布。由于期望最大化(EM)算法具有混合模型的稳定估计能力,因此EM算法用于估计因子负载矩阵。该提交的数据和实验结果表明,即使在点云障碍,数据遮挡,不完全损失和噪声的情况下,该算法也可以实现准确的登记和快速收敛。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号