首页> 外文期刊>Journal of Real-Time Image Processing >Reconstruction of 3D human motion in real-time using particle swarm optimization with GPU-accelerated fitness function
【24h】

Reconstruction of 3D human motion in real-time using particle swarm optimization with GPU-accelerated fitness function

机译:用GPU加速健身功能实时重建3D人类运动

获取原文
获取原文并翻译 | 示例

摘要

In this paper, a novel framework for acceleration of 3D model-based, markerless visual tracking in multi-camera videos is proposed. The objective function being the most computationally demanding part of model-based 3D motion reconstruction is calculated on a GPU. The proposed framework effectively utilizes the rendering power of OpenGL to render the 3D models in the predicted poses, whereas the CUDA threads are used to match such rendered models with the image observations and to perform particle swarm optimization-based tracking. We demonstrate effective parallelization of the particle swarm optimization on GPU. Execution of time-consuming parts of the algorithm on GPU using CUDA-OpenGL significantly accelerates the 3D motion reconstruction, making our method capable of tracking full-body movements with a maximum speed of 15 fps. Qualitative and quantitative experimental results on various four-camera benchmark datasets demonstrate the efficiency and accuracy of our method for real-time motion tracking.
机译:本文提出了一种基于3D模型的基于3D模型的无价值的可视跟踪的新颖框架。在GPU上计算了基于模型的3D运动重建的大多数计算要求苛刻的部分的目标函数。所提出的框架有效利用OpenGL的渲染功率来使3D模型在预测的姿势中呈现,而CUDA线程用于将这种呈现的模型与图像观察匹配并执行基于粒子群优化的跟踪。我们展示了GPU上粒子群优化的有效并行化。使用Cuda-OpenGL在GPU上执行算法的耗时部分显着加速了3D运动重建,使我们的方法能够跟踪最大速度15 FP的全身运动。各种四摄像头基准数据集的定性和定量实验结果证明了我们实时运动跟踪方法的效率和准确性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号