首页> 外文期刊>Journal of Real-Time Image Processing >FPGA-DSP co-processing for feature tracking in smart video sensors
【24h】

FPGA-DSP co-processing for feature tracking in smart video sensors

机译:FPGA-DSP协处理,用于智能视频传感器中的特征跟踪

获取原文
获取原文并翻译 | 示例

摘要

Motion estimation in videos is a computationally intensive process. A popular strategy for dealing with such a high processing load is to accelerate algorithms with dedicated hardware such as graphic processor units (GPU), field programmable gate arrays (FPGA), and digital signal processors (DSP). Previous approaches addressed the problem using accelerators together with a general purpose processor, such as acorn RISC machines (ARM). In this work, we present a co-processing architecture using FPGA and DSP. A portable platform for motion estimation based on sparse feature point detection and tracking is developed for real-time embedded systems and smart video sensors applications. A Harris corner detection IP core is designed with a customized fine grain pipeline on a Virtex-4 FPGA. The detected feature points are then tracked using the Lucas-Kanade algorithm in a DSP that acts as a co-processor for the FPGA. The hybrid system offers a throughput of 160 frames per second (fps) for VGA image resolution. We have also tested the benefits of our proposed solution (FPGA + DSP) in comparison with two other traditional architectures and co-processing strategies: hybrid ARM + DSP and DSP only. The proposed FPGA + DSP system offers a speedup of about 20 times and 3 times over ARM + DSP and DSP only configurations, respectively. A comparison of the Harris feature detection algorithm performance between different embedded processors (DSP, ARM, and FPGA) reveals that the DSP offers the best performance when scaling up from QVGA to VGA resolutions.
机译:视频中的运动估计是一个计算量很大的过程。解决此类高处理负载的一种流行策略是使用专用硬件(例如图形处理器单元(GPU),现场可编程门阵列(FPGA)和数字信号处理器(DSP))来加速算法。先前的方法使用加速器和通用处理器(例如橡子RISC机器(ARM))一起解决了该问题。在这项工作中,我们提出了使用FPGA和DSP的协同处理架构。为实时嵌入式系统和智能视频传感器应用开发了基于稀疏特征点检测和跟踪的便携式运动估计平台。哈里斯拐角检测IP内核在Virtex-4 FPGA上设计了定制的细粒度流水线。然后,在用作FPGA协处理器的DSP中使用Lucas-Kanade算法跟踪检测到的特征点。混合系统为VGA图像分辨率提供每秒160帧(fps)的吞吐量。与另外两种传统架构和协处理策略(仅混合ARM + DSP和DSP)相比,我们还测试了我们提出的解决方案(FPGA + DSP)的优势。所提出的FPGA + DSP系统分别比ARM + DSP和仅DSP配置提供了大约20倍和3倍的加速。对不同嵌入式处理器(DSP,ARM和FPGA)之间的Harris特征检测算法性能的比较表明,从QVGA扩展到VGA分辨率时,DSP提供最佳性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号