首页> 外文期刊>Journal of Real-Time Image Processing >Robust kernelized correlation filter with scale adaption for real-time single object tracking
【24h】

Robust kernelized correlation filter with scale adaption for real-time single object tracking

机译:鲁棒的核化相关滤波器,具有比例自适应功能,可实时跟踪单个对象

获取原文
获取原文并翻译 | 示例

摘要

Kernelized correlation filter (KCF) is a kind of efficient method for real-time tracking, but remains being challenged by the drifting problem due to inaccurate localization caused by the scale variation and wrong candidate selection. In this paper, we propose a new scale adaptive kernelized correlation filter tracker, termed as SKCF, which estimates an accurate scale and models the distribution of correlation response to address the template drifting problem. In SKCF, a scale adaption method is used to find an accurate candidate. Thus we improve its capacity to drastic scale change which usually happens for unmanned aerial vehicles (UAVs)-based applications. The SKCF also introduces a Gaussian distribution to model the correlation response of the target image to select a better candidate in tracking procedure. Extensive experiments are performed on two commonly used tracking benchmarks and also a new benchmark for UAV tracking with complex scale variations. The results show that the proposed SKCF significantly improves the performance compared to the baseline KCF and achieves better performance than state-of-the-art single object trackers at real-time.
机译:核相关滤波器(KCF)是一种有效的实时跟踪方法,但由于尺度变化和错误的候选者选择导致定位不准确,因此仍然面临着漂移问题的挑战。在本文中,我们提出了一种新的尺度自适应核化相关滤波器跟踪器,称为SKCF,它可以估算准确的尺度并为相关响应的分布建模,以解决模板漂移问题。在SKCF中,使用尺度适应方法来找到准确的候选者。因此,我们提高了其急剧变化的能力,这种变化通常发生在基于无人机的应用中。 SKCF还引入了高斯分布,以对目标图像的相关性响应进行建模,从而在跟踪过程中选择更好的候选者。在两个常用的跟踪基准以及针对复杂比例变化的无人机跟踪的新基准上进行了广泛的实验。结果表明,与基线KCF相比,拟议的SKCF显着提高了性能,并且与最新的单对象跟踪器相比,其实时性更好。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号