首页> 外文期刊>Journal of pseudo-differential operators and applications >Octonion Fourier transform of Lipschitz real-valued functions of three variables on the octonion algebra
【24h】

Octonion Fourier transform of Lipschitz real-valued functions of three variables on the octonion algebra

机译:OctOnion傅里叶变换的Lipschitz overOnion代数的三个变量的真实值函数

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we examine the order of magnitude of the octonion Fourier transform (OFT) for real-valued functions of three variables and satisfiying certain Lipschitz conditions. In addition, using the analog of the operator Steklov, we construct the generalized modulus of smoothness, and also using the Laplacian operator we define the K-functional. We use the octonion Fourier transform (OFT) of real-valued functions of three variables to prove the equivalence between K-functionals and modulus of smoothness in the space of square-integrable functions (in Lebesgue sense).
机译:在本文中,我们研究了三个变量的实值函数的octOnion傅里叶变换(OFT)的幅度级,满足某些嘴唇尖头条件。 此外,使用操作员Steklov的模拟,我们构建了广义的平滑度模量,还使用Laplacian操作员我们定义了K-functional。 我们使用三个变量的octOnion傅里叶变换(OFT)的真实值函数,以证明k函数和平坦的平滑度在方形可积函数(Lebesgue Sense)之间的平滑模量之间的等价。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号