首页> 外文期刊>Signal processing >Octonion Fourier Transform of real-valued functions of three variables - selected properties and examples
【24h】

Octonion Fourier Transform of real-valued functions of three variables - selected properties and examples

机译:三个变量的实值函数的Octonion Fourier变换-选定的属性和示例

获取原文
获取原文并翻译 | 示例

摘要

The paper is devoted to properties of the Octonion Fourier Transform (OFT) defined in 2011 by Hahn and Snopek, i.e. symmetry properties, Parseval-Plancherel and Wiener-Khintchine Theorems. This work has been inspired by the Hermitian symmetry of the Complex Fourier Transform and known symmetry relations of the Quaternion Fourier Transform that were defined by Buelow. Similar symmetry relations for the OFT are derived using the notion of octonion involutions. The proof of the corresponding theorem is presented and the result is illustrated with multiple examples. Also the octonion analogues of Parseval and Plancherel Theorems are derived. Those results, along with the shift property of OFT, lead to the proof of the octonion version of Wiener-Khintchine Theorem and the octonion definitions of autocorrelation function and power spectral density of a signal.
机译:本文专门介绍了由Hahn和Snopek在2011年定义的Octonion傅里叶变换(OFT)的性质,即对称性质,Parseval-Plancherel和Wiener-Khintchine定理。这项工作的灵感来自复傅立叶变换的Hermitian对称性和由Buelow定义的四元数傅立叶变换的已知对称关系。 OFF的相似对称关系是使用八音对合的概念得出的。给出了相应定理的证明,并用多个例子说明了结果。还推导了Parseval定理和Plancherel定理的正辛酸类似物。这些结果以及OFT的移位特性导致证明了Wiener-Khintchine定理的八音形式以及信号的自相关函数和功率谱密度的八音定义。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号