首页> 外文期刊>Journal of Pipeline Systems Engineering and Practice >Handling Incomplete and Missing Data in Corrosion Pit Measurement Database Using Imputation Methods: Model Development Using Artificial Neural Network
【24h】

Handling Incomplete and Missing Data in Corrosion Pit Measurement Database Using Imputation Methods: Model Development Using Artificial Neural Network

机译:使用载体方法处理腐蚀坑测量数据库中的不完整和缺失数据:使用人工神经网络的模型开发

获取原文
获取原文并翻译 | 示例

摘要

Data scarcity and missing values are a prime challenge in developing a corrosion prediction model. In this paper, eight imputation techniques are explored using the National Bureau of Standards (NBS) corrosion database. The eight imputation techniques are mean, median, linear regression (LR), K-nearest neighbor (KNN), iterative robust model-based imputation (IRMI), multiple imputations of incomplete multivariate data (AMELIA), sequential imputation for missing values (IMPSEQ), and principal component analysis (PCA). The utility of imputation techniques is checked by training a neural network (NN) on the data sets imputed by the eight techniques. Among the techniques, KNN and IMPSEQ performed better by achieving a low error and high coefficient of determination R2. Results were compared with a baseline accuracy, where the NN model was trained on the original corrosion data set without the missing values. The NN performance increased from the baseline accuracy (81%) when it was trained by KNN (85%) and IMPSEQ (91%) imputed data sets.
机译:数据稀缺和缺失值是开发腐蚀预测模型时的主要挑战。在本文中,利用国家标准局(NBS)腐蚀数据库探索了八种撤销技术。八种归纳技术是平均值,中值,线性回归(LR),K-Collect邻居(KNN),基于迭代强大的模型的归纳(IRMI),不完全多变量数据(AMELIA)的多个避难,缺失值的顺序归档(IMPSEQ )和主成分分析(PCA)。通过训练由八种技术归化的数据集上的神经网络(NN)来检查拒绝技术的效用。在这种技术中,通过实现低误差和高度确定R2来更好地执行kNN和IMPSEQ。结果与基线精度进行了比较,其中NN模型在原始腐蚀数据集上培训而不会缺少值。当由KNN(85%)和IMPSEQ(91%)避阻数据集接受时,NN性能从基线精度(81%)增加到。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号