首页> 外文期刊>Journal of Parallel and Distributed Computing >Multiple pattern matching for network security applications: Acceleration through vectorization
【24h】

Multiple pattern matching for network security applications: Acceleration through vectorization

机译:网络安全应用程序多种模式匹配:通过矢量化加速

获取原文
获取原文并翻译 | 示例

摘要

As both new network attacks emerge and network traffic increases in volume, the need to perform network traffic inspection at high rates is ever increasing. The core of many security applications that inspect network traffic (such as Network Intrusion Detection) is pattern matching. At the same time, pattern matching is a major performance bottleneck for those applications: indeed, it is shown to contribute to more than 70% of the total running time of Intrusion Detection Systems. Although numerous efficient approaches to this problem have been proposed on custom hardware, it is challenging for pattern matching algorithms to gain benefit from the advances in commodity hardware. This becomes even more relevant with the adoption of Network Function Virtualization, that moves network services, such as Network Intrusion Detection, to the cloud, where scaling on commodity hardware is key for performance. In this paper, we tackle the problem of pattern matching and show how to leverage the architecture features found in commodity platforms. We present efficient algorithmic designs that achieve good cache locality and make use of modern vectorization techniques to utilize data parallelism within each core. We first identify properties of pattern matching that make it fit for vectorization and show how to use them in the algorithmic design. Second, we build on an earlier, cache-aware algorithmic design and show how we apply cache-locality combined with SIMD gather instructions to pattern matching. Third, we complement our algorithms with an analytical model that predicts their performance and that can be used to easily evaluate alternative designs. We evaluate our algorithmic design with open data sets of real-world network traffic: Our results on two different platforms, Haswell and Xeon-Phi, show a speedup of 1.8x and 3.6x, respectively, over Direct Filter Classification (DFC), a recently proposed algorithm by Choi et al. for pattern matching exploiting cache locality, and a speedup of more than 2.3x over Aho-Corasick, a widely used algorithm in today's Intrusion Detection Systems. Finally, we utilize highly parallel hardware platforms, evaluate the scalability of our algorithms and compare it to parallel implementations of DFC and Aho-Corasick, achieving processing throughput of up to 45Gbps and close to 2 times higher throughput than Aho-Corasick.
机译:随着新的网络攻击出现和网络流量的卷增加,需要以高速度执行网络流量检查的需求。许多安全应用程序的核心检查网络流量(例如网络入侵检测)是模式匹配。与此同时,模式匹配是这些应用的主要性能瓶颈:实际上,显示有助于贡献入侵检测系统总运行时间的70%以上。虽然已经在定制硬件上提出了众多有效的对该问题的方法,但对于模式匹配算法有挑战性,从商品硬件的进步中获益。这与采用网络功能虚拟化更相关,即将网络服务(例如网络入侵检测)移动到云,在商品硬件上的缩放是性能的关键。在本文中,我们解决了模式匹配问题,并展示了如何利用商品平台中发现的架构功能。我们提出了高效的算法设计,实现了良好的缓存局部性,并利用现代矢量化技术来利用每个核心内的数据并行性。我们首先识别模式匹配的属性,使其适合矢量化,并展示如何在算法设计中使用它们。其次,我们在早期的缓存感知算法设计中构建,并展示我们如何应用缓存局部地结合使用SIMD收集指令以进行模式匹配。第三,我们将我们的算法与一个分析模型补充,该算法预测其性能,可用于容易地评估替代设计。我们使用现实世界网络流量的开放数据集评估我们的算法设计:我们的结果在两个不同的平台上,哈夫韦尔和Xeon-Phi,分别通过直接过滤分类(DFC),分别为1.8倍和3.6倍的加速。最近提出了Choi等人的算法。对于模式匹配,利用高速缓存局部性,以及AHO-Corasick的加速超过2.3倍,在当今的入侵检测系统中广泛使用的算法。最后,我们利用了高度并行硬件平台,评估了算法的可扩展性,并将其与DFC和AHO-Corasick的并行实现进行了比较,实现高达45Gbps的处理吞吐量,而不是Aho-Corasick的吞吐量高2倍。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号