首页> 外文期刊>Journal of Parallel and Distributed Computing >Cooperative unmanned aerial vehicles with privacy preserving deep vision for real-time object identification and tracking
【24h】

Cooperative unmanned aerial vehicles with privacy preserving deep vision for real-time object identification and tracking

机译:合作无人航空公司,隐私保留了实时对象识别和跟踪的深远愿景

获取原文
获取原文并翻译 | 示例

摘要

Human tracking is an important challenge in a wide variety of applications, including but not limited to, surveillance, military operations, and disaster relief services. Unmanned Aerial Vehicles (UAVs) allow the surveying of dangerous or impassable areas from a safe distance. They also provide a machine-based capability, which may not only solve resource constraint issues, but can also improve effectiveness and efficiency in the tracking task. The effectiveness of tracking is directly related to the angle of view and degree of freedom of the camera system. In this paper, we introduce a decentralized, distributed deep learning algorithm for Real-Time Privacy-preserving Target Tracking Re-Identification (RPTF-ReID) used by cooperative UAVs in complex and adversarial environments involving motion, crowded scenes, and varied camera angles. The efficiency of RPTT-ReID makes it amenable to edge computing applications. The proposed algorithmic approach resolves shortfalls with current tracking algorithms, specifically challenges in maintaining tracking when subjects cross paths, switch identity, or are occluded in a frame of view. We demonstrate the power of our approach both in single and multi-UAV scenarios to track movable targets by extracting the facial embedding information in crowds, in order to ensure the privacy of individuals captured by the UAVs without compromising the capability for target re-identification. We validate RPTT-RelD on a challenging video dataset of crowded scenes. Our experimental evaluation shows that the proposed approach is capable of tracking and re-identifying people in crowds despite blended trajectories with minimum and maximum accuracy of 79.91 +/- 0.2% and 93.27 +/- 0.1% respectively. The proposed approach is 18% faster than previous methods for tracking in crowded urban environments. (C) 2019 Elsevier Inc. All rights reserved.
机译:人类跟踪是各种应用中的重要挑战,包括但不限于监视,军事行动和救灾服务。无人驾驶航空公司(无人机)允许从安全距离进行测量危险或可行的区域。它们还提供基于机器的功能,不仅可以解决资源约束问题,而且还可以提高跟踪任务中的有效性和效率。跟踪的有效性与相机系统的视角和自由度直接相关。在本文中,我们介绍了一种分散的分布式深度学习算法,用于实时隐私保留目标跟踪重新识别(RPTF-REID),其在涉及运动,拥挤场景和各种相机角度的复杂和对抗环境中的合作无人机中使用的合作无人机。 RPTT-REID的效率使其适用于边缘计算应用。所提出的算法方法解决了利用当前跟踪算法的短缺,特别是当受试者交叉路径,切换标识或在视图帧中被封闭时维护跟踪的挑战。我们通过在人群中提取面部嵌入信息来展示我们的单一和多UAV方案中的方法的能力,以便确保无人机捕获的个人隐私,而不会影响目标重新识别的能力。我们在拥挤的场景的具有挑战性的视频数据集上验证了RPTT-RELD。我们的实验评估表明,拟议的方法能够跟踪和重新识别人群中的人,尽管轨迹的混合轨迹分别为79.91 +/- 0.2%和93.27 +/- 0.1%。拟议的方法比以前的追踪城市环境跟踪方法速度快18%。 (c)2019 Elsevier Inc.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号