首页> 外文期刊>Journal of Parallel and Distributed Computing >Constructing node-independent spanning trees on the line graph of the hypercube by an independent forest scheme
【24h】

Constructing node-independent spanning trees on the line graph of the hypercube by an independent forest scheme

机译:通过独立森林方案在超立方体的线图中构造节点无关的生成树

获取原文
获取原文并翻译 | 示例

摘要

Due to the application in reliable communication, reliable broadcasting, secure message distribution, etc., node/edge-independent spanning trees (ISTs) have attracted much attention in the past twenty years. However, node/edge conjecture is still open for networks with node/edge-connectivity >= 5. So far, results have been obtained on a lot of special networks, but only a few results are reported on the line graphs of them. Hypercubes play important roles in parallel computing systems, and the line graphs of which have been recently adopted for the architectures of data center networks. Since the line graph of n-dimensional hypercube Q(n), L(Q(n)), is (2n - 2)-regular, whether there exist 2n - 2 node-ISTs rooted at any node on L(Q(n)) is an open question. In this paper, we focus on the problem of constructing node-ISTs on L(Q(n)). Firstly, we point out that L(Q(n)) can be partitioned into 2(n-1) complete graphs. Then, based on the complete graphs and n - 1 node-ISTs rooted at 0 on Q(n-1)(0), we obtain an "independent forest" containing 2n - 2 trees on L(Q(n)). Furthermore, we present an O(N) time algorithm to construct 2n - 2 node-ISTs rooted at node [0, 2(n-1)] isomorphic to each other on L(Q(n)) based on the independent forest, where N = n x 2(n-1) is the number of nodes on L(Q(n)). In addition, we point out that the 2n - 2 node-ISTs on L(Q(n)) is a new method to prove the node/edge-connectivity and the upper bound of (2n - 2)-node/edge-wide-diameter of L(Q(n)). (C) 2019 Elsevier Inc. All rights reserved.
机译:由于在可靠的通信,可靠的广播,安全的消息分发等方面的应用,与节点/边缘无关的生成树(IST)在过去的20年中引起了很多关注。但是,对于节点/边缘连接性> = 5的网络,节点/边缘猜想仍然是开放的。到目前为止,已经在许多特殊网络上获得了结果,但是在它们的折线图中仅报告了少数结果。超立方体在并行计算系统中起着重要的作用,其折线图最近已被数据中心网络的体系结构采用。由于n维超立方体Q(n)的线图L(Q(n))为(2n-2)正则,因此是否存在以L(Q(n) ))是一个悬而未决的问题。在本文中,我们关注于在L(Q(n))上构造节点IST的问题。首先,我们指出L(Q(n))可以划分为2(n-1)个完全图。然后,基于完整的图和Q(n-1)(0)上以0为根的n-1个节点-IST,我们获得了一个包含L(Q(n))上2n-2个树的“独立林”。此外,我们提出了O(N)时间算法,以基于独立森林在L(Q(n))上同构于节点[0,2(n-1)]同构的2n-2个节点-IST,其中N = nx 2(n-1)是L(Q(n))上的节点数。此外,我们指出L(Q(n))上的2n-2个节点IST是证明节点/边缘连接性和(2n-2)-节点/边缘范围的上限的新方法-L(Q(n))的直径。 (C)2019 Elsevier Inc.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号