首页> 外文期刊>Fundamenta Informaticae >Constructing Node-Independent Spanning Trees in Augmented Cubes
【24h】

Constructing Node-Independent Spanning Trees in Augmented Cubes

机译:构建增强多维数据集的节点独立的生成树

获取原文
获取原文并翻译 | 示例

摘要

For a network, edge/node-independent spanning trees (ISTs) can not only tolerate faulty edges/nodes, but also be used to distribute secure messages. As important node-symmetric variants of the hypercubes, the augmented cubes have received much attention from researchers. The n-dimensional augmented cube AQ(n) is both (2n - 1)-edge-connected and (2n - 1)-nodeconnected (n not equal 3), thus the well-known edge conjecture and node conjecture of ISTs are both interesting questions in AQ(n). So far, the edge conjecture on augmented cubes was proved to be true. However, the node conjecture on AQ(n) is still open. In this paper, we further study the construction principle of the node-ISTs by using the double neighbors of every node in the higher dimension. We prove the existence of 2k - 1 node-ISTs rooted at node 0 in AQ(n)(vertical bar 00...0}/n-k (n = k = 4) by proposing an ingenious way of construction and propose a corresponding O(N logN) time algorithm, where N = 2(k) is the number of nodes in AQ(n)(vertical bar 00...0}/n-k.
机译:对于网络,边缘/节点独立的生成树(ISTS)不仅可以容忍错误的边缘/节点,而且可以用于分发安全消息。作为超速的重要节点对称变体,增强多维数据集从研究人员那里得到了很多关注。 N维增强立方体AQ(n)均为(2N - 1) - 连接和(2N - 1) - 不合时切的(n不等于3),因此ists的众所周知的边缘刺激和节点猜测都是AQ(n)中有趣的问题。到目前为止,证明了增强立方体的边缘猜想是真实的。但是,AQ(n)上的节点猜测仍然是打开的。在本文中,我们通过使用较高尺寸中的每个节点的双邻点进一步研究节点ists的施工原理。通过提出一种巧妙的施工方式,我们证明了在AQ(n)(垂直条00 ... 0} / nk(n> = k> = 4)中的节点0处的2k-1节点ists的存在。相应的O(n logn)时间算法,其中n = 2(k)是aq(n)中的节点数(垂直条00 ... 0} / nk。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号