首页> 外文期刊>Journal of Optimization Theory and Applications >Existence of Solutions to Time-Dependent Nonlinear Diffusion Equations via Convex Optimization
【24h】

Existence of Solutions to Time-Dependent Nonlinear Diffusion Equations via Convex Optimization

机译:基于凸优化的时变非线性扩散方程解的存在性

获取原文
获取原文并翻译 | 示例

摘要

This paper aims at providing new existence results for time-dependent nonlinear diffusion equations by following a variational principle. More specifically, the nonlinear equation is reduced to a convex optimization problem via the Lagrange–Fenchel duality relations. We prove that, in the case when the potential related to the diffusivity function is continuous and has a polynomial growth with respect to the solution, the optimization problem is equivalent with the original diffusion equation. In the situation when the potential is singular, the minimization problem has a solution which can be viewed as a generalized solution to the diffusion equation. In this case, it is proved, however, that the null minimizer in the optimization problem in which the state boundedness is considered in addition is the weak solution to the original diffusion problem. This technique allows one to prove the existence in the cases when standard methods do not apply. The physical interpretation of the second case is intimately related to a flow in which two phases separated by a free boundary evolve in time, and has an immediate application to fluid filtration in porous media.
机译:本文旨在遵循变分原理为时变非线性扩散方程提供新的存在性结果。更具体地说,非线性方程通过Lagrange-Fenchel对偶关系简化为凸优化问题。我们证明,在与扩散率函数有关的电位是连续的并且相对于解具有多项式增长的情况下,优化问题与原始扩散方程等效。在势为奇数的情况下,最小化问题具有一个解,可以看作是扩散方程的广义解。然而,在这种情况下,证明了在另外考虑了状态有界性的最优化问题中的零极小子对于原始扩散问题是较弱的解决方案。这种技术可以证明没有标准方法的情况下的存在。第二种情况的物理解释与一种流动密切相关,在该流动中,由自由边界分隔的两个相随时间发展,并立即应用于多孔介质中的流体过滤。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号