...
首页> 外文期刊>Journal of neural engineering >Design of transcranial magnetic stimulation coils with optimal trade-off between depth, focality, and energy
【24h】

Design of transcranial magnetic stimulation coils with optimal trade-off between depth, focality, and energy

机译:经颅磁刺激线圈的设计,在深度,聚焦和能量之间取得最佳平衡

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Objective. Transcranial magnetic stimulation (TMS) is a noninvasive brain stimulation technique used for research and clinical applications. Existent TMS coils are limited in their precision of spatial targeting (focality), especially for deeper targets. This paper presents a methodology for designing TMS coils to achieve optimal trade-off between the depth and focality of the induced electric field (E-field), as well as the energy required by the coil. Approach. A multi-objective optimization technique is used for computationally designing TMS coils that achieve optimal trade-offs between E-field focality, depth, and energy (fdTMS coils). The fdTMS coil winding(s) maximize focality (minimize the volume of the brain region with E-field above a given threshold) while reaching a target at a specified depth and not exceeding predefined peak E-field strength and required coil energy. Spherical and MRI-derived head models are used to compute the fundamental depth-focality trade-off as well as focality-energy trade-offs for specific target depths. Main results. Across stimulation target depths of 1.0-3.4 cm from the brain surface, the suprathreshold volume can be theoretically decreased by 42%-55% compared to existing TMS coil designs. The suprathreshold volume of a figure-8 coil can be decreased by 36%, 44%, or 46%, for matched, doubled, or quadrupled energy. For matched focality and energy, the depth of a figure-8 coil can be increased by 22%. Significance. Computational design of TMS coils could enable more selective targeting of the induced E-field. The presented results appear to be the first significant advancement in the depth-focality trade-off of TMS coils since the introduction of the figure-8 coil three decades ago, and likely represent the fundamental physical limit. transcranial magnetic stimulation (TMS); coil; focal; deep; minimum energy; integer linear programming optimization
机译:目的。经颅磁刺激(TMS)是一种用于研究和临床应用的非侵入性脑刺激技术。现有的TMS线圈的空间定位精度(焦点)有限,特别是对于较深的目标。本文提出了一种用于设计TMS线圈的方法,以在感应电场(电场)的深度和聚焦以及线圈所需的能量之间实现最佳平衡。方法。多目标优化技术用于计算设计TMS线圈,以实现E场焦点,深度和能量之间的最佳折衷(fdTMS线圈)。 fdTMS线圈绕组在达到指定深度且不超过预定峰值电场强度和所需线圈能量的同时,可以最大程度地聚焦(使电场高于给定阈值的大脑区域的体积最小化)。球形和MRI派生的头部模型用于计算特定目标深度的基本深度-焦点权衡以及焦点-能量权衡。主要结果。在距大脑表面1.0-3.4 cm的刺激目标深度范围内,与现有TMS线圈设计相比,超阈值体积理论上可减少42%-55%。对于匹配,翻倍或四倍的能量,数字8线圈的超阈值体积可以减少36%,44%或46%。为了使焦点和能量匹配,八字形线圈的深度可以增加22%。意义。 TMS线圈的计算设计可以使感应电场更加有针对性。自从三十年前图8线圈问世以来,所提出的结果似乎是TMS线圈在深度焦点权衡方面的第一个重大进步,并且很可能代表了基本的物理极限。经颅磁刺激(TMS);线圈焦点深;最小能量整数线性规划优化

著录项

  • 来源
    《Journal of neural engineering》 |2018年第4期|046033.1-046033.14|共14页
  • 作者单位

    Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC 27710, United States of America;

    Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC 27710, United States of America,Department of Electrical and Computer Engineering, Duke University, Durham, NC 27708, United States of America,Department of Neurosurgery, Duke University, Durham, NC 27710, United States of America;

    Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC 27710, United States of America,Department of Electrical and Computer Engineering, Duke University, Durham, NC 27708, United States of America,Department of Neurosurgery, Duke University, Durham, NC 27710, United States of America,Department of Biomedical Engineering, Duke University, Durham, NC 27708, United States of America;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号