首页> 外文期刊>Journal of network and computer applications >rDBF: A r-Dimensional Bloom Filter for massive scale membership query
【24h】

rDBF: A r-Dimensional Bloom Filter for massive scale membership query

机译:RDBF:用于大规模成员资格查询的R维绽放过滤器

获取原文
获取原文并翻译 | 示例

摘要

Bloom Filter is a data structure for membership filtering that is deployed in various domains to boost up the lookup performance and to lower the memory consumption. Bloom Filter has gained a massive popularity nowadays, and thus, it is deployed in diverse domains, namely, Big Data, Cloud Computing, Networking and Security, Bioinformatics, and IoT. Large scale computing uses a huge memory space, on the contrary, Bloom Filter uses a tiny amount of memory space. However, contemporary solution uses large amounts of memory per input item, and uses very complex arithmetic operations. Therefore, in this article, we propose a novel algorithm, called r-Dimensional Bloom Filter which comprises of Two Dimensional Bloom Filter (2DBF), Three Dimensional Bloom Filter (3DBF), Four Dimensional Bloom Filter (4DBF), and Five Dimensional Bloom Filter (5DBF), and it features a) a very fast filtering system, b) less false positive, c) low extra space consumption, d) free from false negative, e) high adaptability, and f) high scalability. Also, multidimensional Bloom Filter is not found in our literature search. But, many solutions claim the development of multidimensional Bloom Filter. However, these are hierarchical Bloom Filters. To evaluate our proposed data structure, we conduct has carried out an extensive experimentation. 2DBF, 3DBF, 4DBF, and 5DBF outperforms Cuckoo Filter in every aspect. We have experimented using Microsoft trace data and Twitter tweets data.
机译:Bloom Filter是用于部署在各个域中的成员资格过滤的数据结构,以提高查找性能并降低内存消耗。 Bloom Filter现在已经获得了大规模的人气,因此,它在不同的域中部署,即大数据,云计算,网络和安全性,生物信息学和IOT。大规模计算使用巨大的内存空间,相反,绽放过滤器使用微小的内存空间。但是,当代解决方案每次输入项目使用大量内存,并使用非常复杂的算术运算。因此,在本文中,我们提出了一种新颖的算法,称为R维绽放过滤器,包括二维盛开滤波器(2DBF),三维绽放滤波器(3DBF),四维盛开过滤器(4dBF)和五维盛开滤波器(5DBF),它的特点是一个非常快的过滤系统,b)较少误报,c)低额外的空间消耗,d)免于假阴性,e)高适应性,并且f)高可扩展性。此外,我们的文献搜索中找不到多维盛开过滤器。但是,许多解决方案声明了多维盛开过滤器的发展。但是,这些是分层绽放过滤器。为了评估我们所提出的数据结构,我们进行了广泛的实验。 2DBF,3DBF,4dBF和5dBF在每个方面都以Cuckoo过滤器优于Cuckoo过滤器。我们使用Microsoft跟踪数据和Twitter Tweets数据进行了实验。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号