首页> 外文期刊>Computers, IEEE Transactions on >Locality-Sensitive Bloom Filter for Approximate Membership Query
【24h】

Locality-Sensitive Bloom Filter for Approximate Membership Query

机译:局部性敏感的Bloom过滤器,用于近似成员资格查询

获取原文
获取原文并翻译 | 示例

摘要

In many network applications, Bloom filters are used to support exact-matching membership query for their randomized space-efficient data structure with a small probability of false answers. In this paper, we extend the standard Bloom filter to Locality-Sensitive Bloom Filter (LSBF) to provide Approximate Membership Query (AMQ) service. We achieve this by replacing uniform and independent hash functions with locality-sensitive hash functions. Such replacement makes the storage in LSBF to be locality sensitive. Meanwhile, LSBF is space efficient and query responsive by employing the Bloom filter design. In the design of the LSBF structure, we propose a bit vector to reduce False Positives (FP). The bit vector can verify multiple attributes belonging to one member. We also use an active overflowed scheme to significantly decrease False Negatives (FN). Rigorous theoretical analysis (e.g., on FP, FN, and space overhead) shows that the design of LSBF is space compact and can provide accurate response to approximate membership queries. We have implemented LSBF in a real distributed system to perform extensive experiments using real-world traces. Experimental results show that LSBF, compared with a baseline approach and other state-of-the-art work in the literature (SmartStore and LSB-tree), takes less time to respond AMQ and consumes much less storage space.
机译:在许多网络应用程序中,布隆过滤器用于支持随机匹配的空间有效数据结构的精确匹配成员资格查询,且错误答案的可能性很小。在本文中,我们将标准布隆过滤器扩展到局部敏感布隆过滤器(LSBF),以提供近似成员资格查询(AMQ)服务。我们通过用位置敏感的哈希函数替换统一和独立的哈希函数来实现这一点。这样的替换使得LSBF中的存储对位置敏感。同时,LSBF采用布隆过滤器设计,不仅节省空间,而且可以响应查询。在LSBF结构的设计中,我们提出了一种用于减少误报(FP)的位向量。位向量可以验证属于一个成员的多个属性。我们还使用主动溢出方案来显着减少误报率(FN)。严格的理论分析(例如,关于FP,FN和空间开销)显示LSBF的设计空间紧凑,可以对近似成员查询提供准确的响应。我们已经在实际的分布式系统中实现了LSBF,以使用真实世界的踪迹执行广泛的实验。实验结果表明,与基线方法和文献(SmartStore和LSB-tree)中的其他最新技术相比,LSBF花费更少的时间来响应AMQ,并且占用的存储空间更少。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号