首页> 外文期刊>Journal of network and computer applications >Flexible indoor localization and tracking system based on mobile phone
【24h】

Flexible indoor localization and tracking system based on mobile phone

机译:基于手机的灵活的室内定位与跟踪系统

获取原文
获取原文并翻译 | 示例

摘要

As the WIFI access points are widely deployed, the received WIFI signal strength is commonly adopted as a positioning characteristic for mobile phone based indoor localization systems. Although WIFI based localization has achieved great development, there are still several key challenges in tracking applications, such as how to modify irregular trajectory obtained from the sequential positioning results. To tackle those challenges, this paper integrates the typical WIFI indoor positioning system with a Pedestrian Dead Reckoning (PDR) system based on the sensors in the mobile phone as many newly emerged systems proposed. The Maximum Likelihood (ML) algorithm is proposed to retrieve the user's initial location and moving direction without any intervention from the user. During the tracking process, a filtering algorithm can revise the moving direction indicated by the sensors only if a straight walking is detected. To obtain more accuracy and efficiency, a combination of Kalman Filter (KF) and auto-adaptive dynamic grid filter (GF) named KAGF is proposed for the fusion of the results from WIFI and PDR system. Experiments in the real scenarios show that our fusion system achieves better results than the widely adopted one, in which the particle filter is used, both in accuracy and computational complexity. Furthermore, the system's effectiveness is improved largely with longer WIFI updating period and larger reference points' interval to achieve the same encouraging results. (C) 2016 Elsevier Ltd. All rights reserved.
机译:随着WIFI接入点的广泛部署,接收到的WIFI信号强度通常被用作基于手机的室内定位系统的定位特征。尽管基于WIFI的定位已经取得了长足的发展,但是在跟踪应用中仍然存在一些关键挑战,例如如何修改从顺序定位结果中获得的不规则轨迹。为了应对这些挑战,本文将基于许多新型传感器的典型WIFI室内定位系统与基于手机传感器的行人航位推算(PDR)系统集成在一起。提出了最大似然(ML)算法,以检索用户的初始位置和移动方向,而无需用户干预。在跟踪过程中,仅当检测到直走时,过滤算法才能修改传感器指示的移动方向。为了获得更高的准确度和效率,提出了将卡尔曼滤波器(KF)和自适应动态网格滤波器(GF)称为KAGF的组合,以融合WIFI和PDR系统的结果。实际场景中的实验表明,与使用粒子滤波器的广泛采用的融合系统相比,我们的融合系统在准确性和计算复杂性方面都取得了更好的效果。此外,通过更长的WIFI更新时间和更大的参考点间隔,可以大大提高系统的有效性,从而获得同样令人鼓舞的结果。 (C)2016 Elsevier Ltd.保留所有权利。

著录项

  • 来源
    《Journal of network and computer applications》 |2016年第7期|107-116|共10页
  • 作者单位

    Beihang Univ, Sch Elect & Informat Engn, Beijing 100191, Peoples R China;

    Beihang Univ, Sch Elect & Informat Engn, Beijing 100191, Peoples R China;

    Beihang Univ, Sch Elect & Informat Engn, Beijing 100191, Peoples R China;

    Beihang Univ, Sch Elect & Informat Engn, Beijing 100191, Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    WIFI positioning; PDR; KF; GF;

    机译:WIFI定位;PDF;OF;GF;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号