...
首页> 外文期刊>Journal of materials science >Propose of high performance resistive type H_2S and CO_2 gas sensing response of reduced graphene oxide/titanium oxide (rGO/TiO_2) hybrid sensors
【24h】

Propose of high performance resistive type H_2S and CO_2 gas sensing response of reduced graphene oxide/titanium oxide (rGO/TiO_2) hybrid sensors

机译:提出高性能电阻型H_2S和氧化钛氧化钛(RGO / TiO_2)混合传感器的高性能电阻型H_2S和CO_2气体感应响应

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Few studies have investigated the electrical and gas sensing properties of reduced graphene oxide/titanium dioxide (rGO/ TiO_2) composite thin films by spray pyrolysis technique. In this work, we report the synthesis and systematic investigation of structural, morphological and gas sensing properties of rGO-loaded TiO_2 nanocomposite thin films. The XRD and AFM results suggest that both pure and rGO/TiO_2 nanocomposite showed crystalline with tetragonal anatase phase and individual spherical shaped nanoparticles with average diameter of around 20-30 nm was observed. rGO/TiO_2, nanocomposite showed high surface area (112 m~2/g) and larger pores (11.2 nm) than bare TiO_2 (89 m~2/g; 32.3 nm). This huge surface area can beneficial for enhancing the gas sensing performance. Resistive type gas sensor set up was constructed and studied the sensing responses towards H_2S and CO_2 gases. The results suggest that the rGO/TiO_2 nanocomposite sensor showed high sensitivity (92%), stability (only loss 3.5%), fast response (30 s) and recovery time (25 s) towards CO_2 gas. The improved gas sensing mechanism of the proposed sensor was discussed in detail.
机译:通过喷雾热解技术研究了少量的研究通过喷雾热解技术研究了石墨烯氧化物/二氧化钛(Rgo / TiO_2)复合薄膜的电气和气体感测性能。在这项工作中,我们报告了RGO负载TiO_2纳米复合薄膜的结构,形态和气体传感性能的合成和系统研究。 XRD和AFM结果表明,纯和rgo / TiO_2纳米复合材料显示出具有四边形锐钛矿相的结晶,并且观察平均直径为约20-30nm的单独球形纳米颗粒。 Rgo / TiO_2,纳米复合材料显示出高表面积(112m〜2 / g)和孔的较大孔(11.2nm),而不是裸TiO_2(89m〜2 / g; 32.3nm)。这种巨大的表面积可以有利于提高气体传感性能。构建电阻式气体传感器设置,并研究了对H_2S和CO_2气体的感测响应。结果表明,RGO / TiO_2纳米复合材料传感器显示出高灵敏度(92%),稳定性(仅损失3.5%),快速响应(30秒)和恢复时间(25秒)朝向CO_2天然气。详细讨论了所提出的传感器的改进的气体传感机理。

著录项

  • 来源
    《Journal of materials science》 |2020年第4期|3695-3705|共11页
  • 作者单位

    Department of Electronics & Communication System AJK College of Arts and Science Coimbatore Tamil Nadu 641 105 India;

    Department of Electronics Erode Arts and Science College Erode Tamil Nadu 63112 India;

    Department of Electronics Erode Arts and Science College Erode Tamil Nadu 63112 India;

    Department of Electronics & Communication System Nehru Arts and Science College Coimbatore Tamil Nadu 641 105 India;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号