首页> 外文期刊>Journal of logic and computation >Sublattices and Δ-blocks of orthomodular posets
【24h】

Sublattices and Δ-blocks of orthomodular posets

机译:Sublatce和δ-斜块的矫形骨折

获取原文
获取原文并翻译 | 示例

摘要

States of quantum systems correspond to vectors in a Hilbert space and observations to closed subspaces. Hence, this logic corresponds to the algebra of closed subspaces of a Hilbert space. This can be considered as a complete lattice with orthocomplementation, but it is not distributive. It satisfies a weaker condition, the so-called orthomodularity. Later on, it was recognized that joins in this structure need not exist provided the subspaces are not orthogonal. Hence, the resulting structure need not be a lattice but a so-called orthomodular poset, more generally an orthoposet only. For orthoposets, we introduce a binary relation Delta and a binary operator d(x,y) that are generalizations of the binary relation C and the commutator c(x,y), respectively, known for orthomodular lattices. We characterize orthomodular posets among orthogonal posets. Moreover, we describe connections between the relations Delta and - (the latter was introduced by P. Ptak and S. Pulmannova) and the operator d(x,y). In addition, we investigate certain orthomodular posets of subsets of a finite set. In particular, we describe maximal orthomodular sublattices and Boolean subalgebras of such orthomodular posets. Finally, we study properties of Delta-blocks with respect to Boolean subalgebras and distributive subposets they include.
机译:量子系统的状态对应于希尔伯特空间的载体和对封闭子空间的观察。因此,该逻辑对应于希尔伯特空间的封闭子空间的代数。这可以被认为是具有正交构成的完整格子,但它不是分配的。它满足了较弱的条件,所谓的正交性。后来,它被认识到,如果子空间不正交,则不需要存在在该结构中的连接。因此,所得结构不需要是晶格,而是所谓的正交姿势,更常见的是矫形术。对于Orthoposets,我们介绍二进制关系Δ和二进制操作者D(x,y),其分别是二进制关系C和换向器C(x,y)的概括,已知正交晶格。我们在正交POSETS中表征了正交胚胎囊。此外,我们描述了关系Delta和< - >(后者由P.Ptak和S.Pulmannova引入)和操作者D(X,Y)之间的连接。此外,我们研究了有限组的子集的某些正晶片。特别是,我们描述了这种正交胚层的最大正交子晶体和布尔亚峰。最后,我们研究了与布尔子晶结构和它们包括的分布子组织的分布式子块的特性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号