首页> 外文学位 >Generalizations of Sperner's Theorem: Packing posets, families forbidding posets, and supersaturation.
【24h】

Generalizations of Sperner's Theorem: Packing posets, families forbidding posets, and supersaturation.

机译:Sperner定理的推广:打包姿势,禁止姿势的族和过饱和。

获取原文
获取原文并翻译 | 示例

摘要

Sperner's Theorem is a well known theorem in extremal set theory that gives the size of the largest antichain in the poset that is the Boolean lattice. This is equivalent to finding the largest family of subsets of an n-set, [n]:= {1,2,..., n}, such that the family is constructed from pairwise unrelated copies of the single element poset.;For a poset P, we are interested in maximizing the size of a family F of subsets of [n], where each maximally connected component of F is a copy of P, and finding the extreme configurations that achieve this value. For instance, Sperner showed that when P is one element, n n2 is the maximum number of copies of P and that this is only achieved by taking subsets of a middle size. Griggs, Stahl, and Trotter have shown that when P is a chain on k elements, 12k-1 nn2 is asymptotically the maximum number of copies of P. We find the extreme families for a packing of chains, answering a conjecture of Griggs, Stahl, and Trotter, as well as finding the extreme packings of certain other posets. For the general poset P, we prove that the maximum number of unrelated copies of P is asymptotic to a constant times n n2 . Moreover, the constant has the form 1cP , where c(P) is the size of the smallest convex closure over all embeddings of P into the Boolean lattice.;Sperner's Theorem has been generalized by looking for La(n,P ), the size of a largest family of subsets of an n-set that does not contain a general poset P in the family. We look at this generalization, exploring different techniques for finding an upper bound on La(n,P), where P is the diamond. We also find all the families that achieve La(n,{ V Lambda}), the size of the largest family of subsets that do not contain either of the posets V or Lambda.;We also consider another generalization of Sperner's theorem, supersaturation, where we find how many copies of P are in a family of a fixed size larger than La(n,P). We seek families of subsets of an n-set of given size that contain the fewest k -chains. Erdős showed that a largest k-chain-free family in the Boolean lattice is formed by taking all subsets of the ( k - 1) middle sizes. Our result implies that by taking this family together with x subsets of the k-th middle size, we obtain a family with the minimum number of k-chains, over all families of this size. We prove our result using the symmetric chain decomposition method of de Bruijn, van Ebbenhorst Tengbergen, and Kruyswijk (1951).
机译:Sperner定理是极值集理论中的一个著名定理,它给出了位图中最大的反链的大小,即布尔晶格。这等效于找到一个n集的最大子集族[n]:= {1,2,...,n},这样该族是由单个元素位姿的成对无关副本构成的。对于位姿P,我们感兴趣的是最大化[n]子集的族F的大小,其中F的每个最大连接组成部分都是P的副本,并寻找达到该值的极限构型。例如,Sperner表明,当P是一个元素时,n n2是P的最大副本数,这只能通过获取中等大小的子集来实现。 Griggs,Stahl和Trotter证明,当P是k个元素上的链时,渐近渐近点P的最大副本数为12k-1 nn2。我们找到了链堆积的极端族,回答了Griggs,Stahl的猜想,和Trotter,以及找到某些其他球型的极端包装。对于一般的姿态P,我们证明P的无关副本的最大数目是渐近于n n2的常数。此外,常数的形式为1cP,其中c(P)是P在布尔格中所有嵌入的最小凸封闭的大小。;通过寻找La(n,P)来推广Sperner定理一个不包含一般位姿P的n集的子集的最大子集。我们着眼于这种概括,探索了不同的技术来找到La(n,P)的上限,其中P是菱形。我们还找到所有达到La(n,{V Lambda})的族,这是不包含位姿V或Lambda的最大子集族的大小;我们还考虑了Sperner定理的另一泛化,即过饱和,在这里,我们发现一个固定大小大于La(n,P)的族中有P个副本。我们寻找包含最小k链的给定大小的n集子集的族。 Erdő s表明,布尔格子中最大的无k链族是通过获取(k-1)个中等大小的所有子集而形成的。我们的结果表明,通过将该族与第k个中间大小的x个子集结合在一起,我们获得了一个在该大小所有族中k链数量最少的一个族。我们使用de Bruijn,van Ebbenhorst Tengbergen和Kruyswijk(1951)的对称链分解方法证明了我们的结果。

著录项

  • 作者

    Dove, Andrew Philip.;

  • 作者单位

    University of South Carolina.;

  • 授予单位 University of South Carolina.;
  • 学科 Mathematics.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 50 p.
  • 总页数 50
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号