首页> 外文期刊>The journal of logical and algebraic methods in programming >Algebraic solution of minimax single-facility constrained location problems with Chebyshev and rectilinear distances
【24h】

Algebraic solution of minimax single-facility constrained location problems with Chebyshev and rectilinear distances

机译:Minimax单设施的代数解决方法与Chebyshev和直线距离的定位问题

获取原文
获取原文并翻译 | 示例

摘要

We consider location problems to find the optimal sites of placement of a new facility, which minimize the maximum weighted Chebyshev or rectilinear distance to existing facilities under constraints on a feasible location domain. We examine Chebyshev location problems in multidimensional space to represent and solve the problems in the framework of tropical (idempotent) algebra, which deals with the theory and applications of semirings and semifields with idempotent addition. The solution approach involves formulating the problem as a tropical optimization problem, introducing a parameter that represents the minimum value of the objective function in the problem, and reducing the problem to a system of parametrized inequalities. The necessary and sufficient conditions for the existence of a solution to the system serve to evaluate the minimum, whereas all corresponding solutions of the system present a complete solution of the optimization problem. With this approach we obtain direct, exact solutions represented in a compact closed form which is appropriate for further analysis and straightforward computations with polynomial time complexity. The solutions of the Chebyshev problems are then used to solve location problems with rectilinear distance in the two-dimensional plane. The obtained solutions extend previous results on the Chebyshev and rectilinear location problems without weights and with less general constraints.
机译:我们考虑找到新设施的最佳位置的位置问题,这使得最大加权Chebyshev或直线距离最小化到可行位置域的约束下的现有设施。我们在多维空间中检查Chebyshev位置问题,以代表和解热带(Idempotentent)代数框架中的问题,这涉及幂等地加入的半菱形和半纤维的理论和应用。解决方案方法涉及将问题作为热带优化问题,引入了一个参数,该参数表示问题的目标函数的最小值,并将问题减少到参数化不等式系统。存在对系统解决方案的必要和充分条件用于评估最低限度,而该系统的所有相应解决方案都存在优化问题的完整解决方案。通过这种方法,我们获得了以紧凑的封闭形式表示的直接,精确的解决方案,其适用于具有多项式时间复杂性的进一步分析和直接计算。然后使用Chebyshev问题的解决方案来解决二维平面中的直线距离的位置问题。所获得的解决方案在没有权重的Chebyshev和直线位置问题上延伸了先前的结果,并且具有较少的总约束。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号