首页> 外文期刊>Journal of intelligent material systems and structures >Speed-dependent nonlinear broadband vibrations of smart functionally graded piezoelectric material plates
【24h】

Speed-dependent nonlinear broadband vibrations of smart functionally graded piezoelectric material plates

机译:智能功能梯度压电材料板的速度相关非线性宽带振动

获取原文
获取原文并翻译 | 示例

摘要

In this work, speed-dependent nonlinear vibrations of functionally graded piezoelectric material plates are investigated both analytically and numerically. The functionally graded piezoelectric material plates move in the longitudinal direction at a constant speed. The material properties of functionally graded piezoelectric material plates have graded distribution in the thickness direction that obeys a power law. Adopting the Karman nonlinear geometrical relations, the transverse equation of motion is derived from d'Alembert's principle by considering the dynamic equilibrium relationships. After that, the Galerkin method is used to discretize the equation of motion, resulting in a set of ordinary differential equations with respect to time. These ordinary differential equations are solved analytically by utilizing the method of harmonic balance. Then, the approximate analytical results are validated by utilizing the adaptive step-size fourth-order Runge-Kutta technique. The stability of approximate analytical solutions is also examined via the perturbation method. Nonlinear frequency-amplitude characteristics show some interesting nonlinear vibration phenomena in the smart structures. Specially, the nonlinear broadband vibration is detected in the translational functionally graded piezoelectric material plates due to the mode interaction. Finally, a parametric study is conducted to reveal the effects of system parameters on the nonlinear vibration characteristics of the translational functionally graded piezoelectric material plates.
机译:在这项工作中,通过分析和数值研究功能梯度压电材料板的速度相关的非线性振动。功能梯度压电材料板在纵向方向上以恒定速度移动。功能梯度压电材料板的材料特性在厚度方向上具有遵循幂律的梯度分布。采用Karman非线性几何关系,通过考虑动态平衡关系,根据d'Alembert原理推导了横向运动方程。此后,使用Galerkin方法离散运动方程,得到一组关于时间的常微分方程。利用谐波平衡法对这些常微分方程进行解析求解。然后,利用自适应步长四阶Runge-Kutta技术验证近似分析结果。近似分析溶液的稳定性也通过微扰方法进行了检验。非线性频率-振幅特性在智能结构中显示出一些有趣的非线性振动现象。特别地,由于模式相互作用,在平移功能梯度压电材料板中检测到非线性宽带振动。最后,进行参数研究以揭示系统参数对平移功能梯度压电材料板非线性振动特性的影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号