首页> 外文期刊>Journal of information and computing science >Automatic Segmentation Approach Based Data Aggregation for the Classification of Brain Tissues
【24h】

Automatic Segmentation Approach Based Data Aggregation for the Classification of Brain Tissues

机译:基于自动分割方法的脑组织分类数据聚合

获取原文
获取原文并翻译 | 示例

摘要

The paper presents a study and an evaluation of a novel unsupervised segmentation technique based aggregation approach and some of possibility theory concepts. Firstly, the MPFCM (Modified Possibilistic Fuzzy C-Means) algorithm is used to extract information from each of MR images modalities. In second step, an obtained data are combined with an operator in order to exploiting the uncertainty and ambiguity in the images. Finally, the segmented image is constructed using a decision rule. The efficiency of the proposed method is demonstrated by segmentation experiments using simulated MR images with different noise levels.
机译:本文提出了一种基于聚集方法的新型无监督分割技术的研究和评估,并提出了一些可能性理论的概念。首先,使用MPFCM(改进的可能性模糊C均值)算法从每个MR图像模态中提取信息。在第二步骤中,将获得的数据与运算符组合以便利用图像中的不确定性和模糊性。最后,使用决策规则构造分割图像。通过使用具有不同噪声水平的模拟MR图像进行分割实验,证明了该方法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号