首页> 外文期刊>Concurrency and computation: practice and experience >Fully automatic model-based segmentation and classification approach for MRI brain tumor using artificial neural networks
【24h】

Fully automatic model-based segmentation and classification approach for MRI brain tumor using artificial neural networks

机译:基于神经网络的基于模型的全自动MRI脑肿瘤分割与分类方法

获取原文
获取原文并翻译 | 示例

摘要

The accuracy of brain tumor diagnosis based on medical images is greatly affected by the segmentation process. The segmentation determines the tumor shape, location, size, and texture. In this study, we proposed a new segmentation approach for brain tissues using MR images. The method includes three computer vision fiction strategies which are enhancing images, segmenting images, and filtering out non ROI based on the texture and HOG features. A fully automatic model-based trainable segmentation and classification approach for MRI brain tumour using artificial neural networks to precisely identifying the location of the ROI. Therefore, the filtering out non ROI process have used in view of histogram investigation to avert the non ROI and select the correct object in brain MRI. However, identification the tumor kind utilizing the texture features. A total of 200 MRI cases are utilized for the comparing between automatic and manual segmentation procedure. The outcomes analysis shows that the fully automatic model-based trainable segmentation over performs the manual method and the brain identification utilizing the ROI texture features. The recorded identification precision is 92.14%, with 89 sensitivity and 94 specificity.
机译:分割过程极大地影响了基于医学图像的脑肿瘤诊断的准确性。分割确定肿瘤的形状,位置,大小和质地。在这项研究中,我们提出了一种使用MR图像对脑组织进行分割的新方法。该方法包括三种计算机视觉小说策略,它们是增强图像,分割图像并基于纹理和HOG特征滤除非ROI。基于MRI的脑肿瘤的基于模型的全自动可训练分割和分类方法,使用人工神经网络来精确识别ROI的位置。因此,出于直方图调查的目的,已滤除非ROI流程可避免非ROI并在脑MRI中选择正确的对象。然而,利用纹理特征识别肿瘤种类。共有200例MRI病例用于自动和手动分割程序之间的比较。结果分析表明,基于模型的全自动可训练分割算法执行了手动方法,并利用ROI纹理特征进行了大脑识别。记录的识别精度为92.14%,灵敏度为89,特异性为94。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号