首页> 外文期刊>Journal of information and computational science >Research into Power Load Forecasting Based on Strong Regression Wavelet Neural Network with Variable Basis Functions
【24h】

Research into Power Load Forecasting Based on Strong Regression Wavelet Neural Network with Variable Basis Functions

机译:基于可变基函数的强回归小波神经网络的电力负荷预测研究

获取原文
获取原文并翻译 | 示例

摘要

The Wavelet Neural Network (WNN) is widely used in power load forecasting. In view that the traditional WNN easily falls into the local minimum and has unstable forecast results, a new power load forecasting model of combining the AdaBoost algorithm with WNN was put forward to improve the forecasting accuracy and generalization ability. Firstly, the method performed the pre-treatment for the historical power load data and initialized the distribution weights of test data. Secondly, it selected different wavelet basis functions randomly to construct weak predictors of WNN, and trained the sample data repeatedly. At last, it made more weak predictors of WNN to form a new strong predictor by AdaBoost algorithm for regression forecasting. A simulation experiment for the dataset of Individual Household Electric Power Consumption in University of California Irvine (UCI) was carried out. The results show that this method has reduced the average error value by more than 66.5% compared to the traditional WNN, and has improved the forecasting accuracy of neural network. This method provides references for the WNN forecasting.
机译:小波神经网络(WNN)广泛用于电力负荷预测。针对传统的WNN容易陷入局部最小值,预测结果不稳定的问题,提出了将AdaBoost算法与WNN相结合的电力负荷预测模型,以提高预测的准确性和泛化能力。首先,该方法对历史电力负荷数据进行了预处理,并初始化了测试数据的分布权重。其次,它随机选择不同的小波基函数来构造WNN的弱预测变量,并反复训练样本数据。最后,利用AdaBoost算法对WNN的较弱的预测因子进行了建模,从而形成了一个新的较强的预测因子,用于回归预测。对加州大学欧文分校(UCI)的个人家庭用电量数据集进行了仿真实验。结果表明,该方法与传统的WNN相比,平均误差值降低了66.5%以上,提高了神经网络的预测精度。该方法为WNN预测提供参考。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号