首页> 外文期刊>Journal of information and computational science >Time-varying Channel Tracking and Prediction Based on Complex-valued Back-propagation Neural Network
【24h】

Time-varying Channel Tracking and Prediction Based on Complex-valued Back-propagation Neural Network

机译:基于复值反向传播神经网络的时变信道跟踪与预测

获取原文
获取原文并翻译 | 示例

摘要

The Complex-valued Back-propagation Neural Network (CVBPNN) algorithm is applied for time-varying channel tracking and prediction in communication system and is verified in the communication simulation system. Firstly, the CVBPNN tracking model is constructed, the hidden layer and output layer of which have non-linear and linear activation function respectively, and the delayed CSI is looked as the supervised signal for the model training to acquire model parameters. Then the tracking parameters is transferred to the prediction neural network which has the same network architecture as the tracking neural network, and the network is used to forward prediction for the output of the tracking model. Simulation results show that the proposed algorithm has less prediction error, lower computational complexity and faster running speed.
机译:复值反向传播神经网络(CVBPNN)算法被应用于通信系统中时变信道的跟踪和预测,并在通信仿真系统中得到了验证。首先,构建了CVBPNN跟踪模型,其隐藏层和输出层分别具有非线性和线性激活功能,并将延迟的CSI视为用于模型训练的监督信号,以获取模型参数。然后,将跟踪参数传输到与跟踪神经网络具有相同网络架构的预测神经网络,并使用该网络对跟踪模型的输出进行前向预测。仿真结果表明,该算法预测误差小,计算复杂度低,运行速度快。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号