首页> 外文期刊>Neural processing letters >Global Asymptotic Stability for Complex-Valued Neural Networks with Time-Varying Delays via New Lyapunov Functionals and Complex-Valued Inequalities
【24h】

Global Asymptotic Stability for Complex-Valued Neural Networks with Time-Varying Delays via New Lyapunov Functionals and Complex-Valued Inequalities

机译:通过新的Lyapunov泛函和复数值不等式具有时变时滞的复数值神经网络的全局渐近稳定性

获取原文
获取原文并翻译 | 示例

摘要

By constructing novel Lyapunov functionals and using some new complex-valued inequalities, a new LMI-based sufficient condition on global asymptotic stability of equilibrium point for complex-valued recurrent neural networks with time-varying delays is established. In our result, the assumption for boundedness in existing papers on the complex-valued activation functions is removed and the matrix inequalities used in recent papers are replaced with new matrix inequalities. On the other hand, we construct new Lyapunov functionals which are different from those constructed in existing papers. Hence, our result is less conservative, new and complementary to the previous results.
机译:通过构造新颖的Lyapunov泛函并使用一些新的复数值不等式,建立了一个新的基于LMI的时变时滞复数值递归神经网络平衡点全局渐近稳定性的充分条件。在我们的结果中,删除了现有论文中关于复值激活函数的有界假设,并将最近论文中使用的矩阵不等式替换为新的矩阵不等式。另一方面,我们构造了新的Lyapunov功能,这些功能与现有论文中构造的功能不同。因此,我们的结果不那么保守,新颖并且是对先前结果的补充。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号