首页> 外文期刊>Neural Networks and Learning Systems, IEEE Transactions on >Fading Channel Prediction Based on Combination of Complex-Valued Neural Networks and Chirp Z-Transform
【24h】

Fading Channel Prediction Based on Combination of Complex-Valued Neural Networks and Chirp Z-Transform

机译:基于复值神经网络和线性调频Z变换相结合的衰落信道预测

获取原文
获取原文并翻译 | 示例

摘要

Channel prediction is an important process for channel compensation in a fading environment. If a future channel characteristic is predicted, adaptive techniques, such as pre-equalization and transmission power control, are applicable before transmission in order to avoid degradation of communications quality. Previously, we proposed channel prediction methods employing the chirp z-transform (CZT) with a linear extrapolation as well as a Lagrange extrapolation of frequency-domain parameters. This paper presents a highly accurate method for predicting time-varying channels by combining a multilayer complex-valued neural network (CVNN) with the CZT. We demonstrate that the channel prediction accuracy of the proposed CVNN-based prediction is better than those of the conventional prediction methods in a series of simulations and experiments.
机译:信道预测是在衰落环境中进行信道补偿的重要过程。如果预测到未来的信道特性,则在传输之前可以应用诸如预均衡和传输功率控制之类的自适应技术,以避免通信质量下降。以前,我们提出了使用线性调频线性调频线性调频线性调频Z变换(CZT)的信道预测方法。本文提出了一种通过将多层复数值神经网络(CVNN)与CZT结合来预测时变频道的高精度方法。在一系列的仿真和实验中,证明了基于CVNN的预测方法的信道预测精度优于传统的预测方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号