首页> 外文期刊>Journal of Field Robotics >Risk-aware Path Planning for Autonomous Underwater Vehicles using Predictive Ocean Models
【24h】

Risk-aware Path Planning for Autonomous Underwater Vehicles using Predictive Ocean Models

机译:使用预测海洋模型的自主水下航行器的风险感知路径规划

获取原文
获取原文并翻译 | 示例

摘要

Recent advances in Autonomous Underwater Vehicle (AUV) technology have facilitated the collection of oceano-graphic data at a fraction of the cost of ship-based sampling methods. Unlike oceanographic data collection in the deep ocean, operation of AUVs in coastal regions exposes them to the risk of collision with ships and land.. Such concerns are particularly prominent for slow-moving AUVs since ocean current magnitudes are often strong enough to alter the planned path significantly. Prior work using predictive ocean currents relies upon deterministic outcomes, which do not account for the uncertainty in the ocean current predictions themselves. To improve the safety and reliability of AUV operation in coastal regions, we introduce two stochastic planners: (a) a Minimum Expected Risk planner and (b) a risk-aware Markov Decision Process, both of which have the ability to utilize ocean current predictions probabilistically. We report results from extensive simulation studies in realistic ocean current fields obtained from widely used regional ocean models. Our simulations show that the proposed planners have lower collision risk than state-of-the-art methods. We present additional results from field experiments where ocean current predictions were used to plan the paths of two Slocum gliders. Field trials indicate the practical usefulness of our techniques over long-term deployments, showing them to be ideal for AUV operations.
机译:自主水下航行器(AUV)技术的最新进展促进了海洋图形数据的收集,而成本仅是基于船舶的采样方法的一小部分。与深海中的海洋学数据收集不同,在沿海地区使用AUV会使他们面临与船舶和陆地相撞的风险。.对于缓慢移动的AUV尤其如此,因为洋流的强度通常足以改变计划路径明显。先前使用预测洋流进行的工作依赖于确定性结果,这些结果并不能说明洋流预测本身的不确定性。为了提高沿海地区AUV作业的安全性和可靠性,我们引入了两个随机计划者:(a)最低预期风险计划者和(b)风险意识马尔可夫决策程序,两者均具有利用洋流预测的能力概率地。我们报告了从广泛使用的区域海洋模型获得的现实海流领域中广泛模拟研究的结果。我们的仿真表明,与最先进的方法相比,拟议的计划者具有更低的碰撞风险。我们提供了野外实验的其他结果,在这些实验中,洋流预测用于计划两个Slocum滑翔机的路径。现场试验表明,我们的技术在长期部署中具有实用性,表明它们是AUV作业的理想选择。

著录项

  • 来源
    《Journal of Field Robotics》 |2013年第5期|741-762|共22页
  • 作者单位

    Department of Computer Science, University of Southern California, Los Angeles, California 90007;

    Willow Garage, Menlo Park, California 94025;

    Department of Computer Science, University of Southern California, Los Angeles, California 90007;

    Department of Computer Science, University of Southern California, Los Angeles, California 90007;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号