首页> 外文OA文献 >Planning and implementing trajectories for autonomous underwater vehicles to track evolving ocean processes based on predictions from a regional ocean model
【2h】

Planning and implementing trajectories for autonomous underwater vehicles to track evolving ocean processes based on predictions from a regional ocean model

机译:根据区域海洋模型的预测,规划和实施自动水下航行器的轨迹,以跟踪不断演变的海洋过程

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Path planning and trajectory design for autonomous underwater vehicles (AUVs) is of great importance to the oceanographic research community because automated data collection is becoming more prevalent. Intelligent planning is required to maneuver a vehicle to high-valued locations to perform data collection. In this paper, we present algorithms that determine paths for AUVs to track evolving features of interest in the ocean by considering the output of predictive ocean models. While traversing the computed path, the vehicle provides near-real-time, in situ measurements back to the model, with the intent to increase the skill of future predictions in the local region. The results presented here extend prelim- inary developments of the path planning portion of an end-to-end autonomous prediction and tasking system for aquatic, mobile sensor networks. This extension is the incorporation of multiple vehicles to track the centroid and the boundary of the extent of a feature of interest. Similar algorithms to those presented here are under development to consider additional locations for multiple types of features. The primary focus here is on algorithm development utilizing model predictions to assist in solving the motion planning problem of steering an AUV to high-valued locations, with respect to the data desired. We discuss the design technique to generate the paths, present simulation results and provide experimental data from field deployments for tracking dynamic features by use of an AUV in the Southern California coastal ocean.
机译:自主水下航行器(AUV)的路径规划和轨迹设计对海洋学研究界至关重要,因为自动数据收集变得越来越普遍。需要智能计划,才能将车辆操纵到高价值位置以执行数据收集。在本文中,我们提出了通过考虑预测海洋模型的输出来确定AUV跟踪海洋中不断变化的特征的算法。在遍历计算出的路径时,车辆会向模型提供近实时的原位测量结果,目的是提高本地区域未来预测的技能。这里介绍的结果扩展了水生移动传感器网络端到端自主预测和任务系统的路径规划部分的初步开发。这种扩展是并入了多个车辆,以跟踪感兴趣特征范围的质心和边界。正在开发与此处介绍的算法类似的算法,以考虑多种类型特征的其他位置。这里的主要重点是利用模型预测来协助算法开发,以解决相对于所需数据将AUV转向高价值位置的运动计划问题。我们讨论了设计技术,以生成路径,提供仿真结果并提供来自野外部署的实验数据,以利用南加州沿海海洋中的AUV跟踪动态特征。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号