首页> 外文期刊>Journal of Field Robotics >Selective Combination of Visual and Thermal Imaging for Resilient Localization in Adverse Conditions: Day and Night, Smoke and Fire
【24h】

Selective Combination of Visual and Thermal Imaging for Resilient Localization in Adverse Conditions: Day and Night, Smoke and Fire

机译:视觉和热成像的选择性组合,可在不利条件下进行弹性定位:日夜,烟和火

获取原文
获取原文并翻译 | 示例

摘要

Long-term autonomy in robotics requires perception systems that are resilient to unusual but realistic conditions that will eventually occur during extended missions. For example, unmanned ground vehicles (UGVs) need to be capable of operating safely in adverse and low-visibility conditions, such as at night or in the presence of smoke. The key to a resilient UGV perception system lies in the use of multiple sensor modalities, e.g., operating at different frequencies of the electromagnetic spectrum, to compensate for the limitations of a single sensor type. In this paper, visual and infrared imaging are combined in a Visual-SLAM algorithm to achieve localization. We propose to evaluate the quality of data provided by each sensor modality prior to data combination. This evaluation is used to discard low-quality data, i.e., data most likely to induce large localization errors. In this way, perceptual failures are anticipated and mitigated. An extensive experimental evaluation is conducted on data sets collected with a UGV in a range of environments and adverse conditions, including the presence of smoke (obstructing the visual camera), fire, extreme heat (saturating the infrared camera), low-light conditions (dusk), and at night with sudden variations of artificial light. A total of 240 trajectory estimates are obtained using five different variations of data sources and data combination strategies in the localization method. In particular, the proposed approach for selective data combination is compared to methods using a single sensor type or combining both modalities without preselection. We show that the proposed framework allows for camera-based localization resilient to a large range of low-visibility conditions.
机译:机器人技术的长期自治需要感知系统,这些感知系统必须能够应对在扩展任务期间最终发生的异常但现实的条件。例如,无人地面车辆(UGV)需要能够在不利和低能见度的条件下安全运行,例如在晚上或有烟的情况下。弹性UGV感知系统的关键在于使用多种传感器模式,例如以电磁频谱的不同频率运行,以补偿单个传感器类型的局限性。本文将视觉​​和红外成像结合在Visual-SLAM算法中以实现定位。我们建议在数据合并之前评估每个传感器模式提供的数据质量。该评估用于丢弃低质量数据,即最有可能引起较大定位错误的数据。这样,可以预见并减轻感知上的故障。在各种环境和不利条件下,对使用UGV收集的数据集进行了广泛的实验评估,包括烟雾的存在(阻碍视觉摄像机),火灾,极热(使红外摄像机饱和),弱光条件(黄昏),以及夜间人造光突然变化的情况。使用本地化方法中的数据源和数据组合策略的五个不同变体,可获得总计240个轨迹估计。特别地,将所提出的用于选择性数据组合的方法与使用单个传感器类型或在不进行预选的情况下组合两种模式的方法进行了比较。我们表明,提出的框架允许基于相机的本地化适应各种低可见性条件。

著录项

  • 来源
    《Journal of Field Robotics》 |2013年第4期|641-666|共26页
  • 作者单位

    Australian Centre for Field Robotics, The University of Sydney, NSW 2006, Australia;

    Australian Centre for Field Robotics, The University of Sydney, NSW 2006, Australia;

    Centre for Autonomous Systems, Faculty of Engineering and IT, University of Technology Sydney, NSW 2007, Australia;

    Australian Centre for Field Robotics, The University of Sydney, NSW 2006, Australia;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号