首页> 外文期刊>Journal of Environmental Management >Regulating acidogenesis and methanogenesis for the separated bio-generation of hydrogen and methane from saline-to-hypersaline industrial wastewater
【24h】

Regulating acidogenesis and methanogenesis for the separated bio-generation of hydrogen and methane from saline-to-hypersaline industrial wastewater

机译:调节产酸和产甲烷的过程,以从盐水到高碱性工业废水中分离出生物产生的氢和甲烷

获取原文
获取原文并翻译 | 示例

摘要

Given the limitations of acidogens and methanogens activities under saline environments, this work aims to optimize the main operational parameters affecting hydrogen and methane production from saline-to-hypersaline wastewater containing mono-ethylene glycol (MEG). MEG is the main contaminant in several saline industrial effluents. Anaerobic baffled reactor (ABR), as a multi-stage system, was used at different temperatures (Le., 19-31 degrees C [ambient] and 35 degrees C), organic loading rates (OLRs) of 0.6-2.2 gCOD/L/d, and salinity of 5-35 gNaCl/L. Mesophilic conditions of 35 degrees C substantially promoted MEG biodegradability (92-98%) and hydrogen/methane productivity, even at elevated salinity. Hydrogen yield (HY) and methane yield (MY) peaked to 258 and 140 mL/gCOD(add), respectively, at OLR 0.64 gCOD/L/d and salinity up to 20-25 gNaCl/L. An immobilized sludge ABR (ISABR), packed with polyurethane media, was further compared with classical ABR, resulting in 1.8-fold higher MY, at 35 gNaCl/L. Microbial analysis showed that introducing attached growth system (ISABR) substantially promoted methanogens abundance, which was dominated by genus Methanosarcina. Among bacterial genera, Acetobacteriwn was dominant, particularly in 1st compartment, representing MEG-degrading/salt-tolerant genus. At high salinity up to 35 gNaCl/L, the multi-phase and attached growth configuration can efficiently reduce the induced salt stress, particularly on methanogens, towards balanced and separated acidogenesis/ methanogenesis. Overall, producing hydrogen and methane from anaerobic treatment of MEG-based saline wastewater is feasible at optimized parameters and configuration.
机译:考虑到在盐环境下酸原和甲烷原活动的局限性,这项工作旨在优化影响从含单乙二醇(MEG)的盐到高碱性废水的氢气和甲烷生产的主要操作参数。 MEG是几种盐水工业废水中的主要污染物。作为多级系统的厌氧折流板反应器(ABR)在不同温度(Le。,19-31摄氏度(环境温度)和35摄氏度)下使用,有机负荷速率(OLR)为0.6-2.2 gCOD / L / d,盐度为5-35 gNaCl / L。即使在升高的盐度下,35摄氏度的中温条件也显着提高了MEG的生物降解性(92-98%)和氢/甲烷生产率。氢产率(HY)和甲烷产率(MY)分别在OLR 0.64 gCOD / L / d和盐度高达20-25 gNaCl / L时分别达到258和140 mL / gCOD(添加)。进一步将填充有聚氨酯介质的固定污泥ABR(ISABR)与经典ABR进行了比较,得出的MY值高出1.8倍,为35 gNaCl / L。微生物分析表明,引入附着生长系统(ISABR)可以显着提高产甲烷菌的丰度,而甲烷甲烷藻菌属则占主导地位。在细菌属中,醋杆菌属占主导地位,特别是在第一区室,代表MEG降解/耐盐属。在高达35 gNaCl / L的高盐度下,多相和附着的生长构型可以有效地降低诱导的盐胁迫,尤其是对产甲烷菌而言,趋向于平衡和分离的产酸/产甲烷作用。总体而言,在优化的参数和配置下,基于MEG的含盐废水的厌氧处理生产氢气和甲烷是可行的。

著录项

  • 来源
    《Journal of Environmental Management》 |2019年第15期|109546.1-109546.12|共12页
  • 作者单位

    Tokyo Inst Technol Dept Civil & Environm Engn Meguro Ku Tokyo 1528552 Japan|Egypt Japan Univ Sci & Technol Environm Engn Dept Alexandria 21934 Egypt|Aswan Univ Civil Engn Dept Aswan 81511 Egypt;

    Tokyo Inst Technol Dept Civil & Environm Engn Meguro Ku Tokyo 1528552 Japan|Alexandria Univ Sanit Engn Dept Alexandria 21544 Egypt;

    Egypt Japan Univ Sci & Technol Environm Engn Dept Alexandria 21934 Egypt|Alexandria Univ High Inst Publ Hlth Environm Hlth Dept Alexandria 21544 Egypt;

    Tokyo Inst Technol Dept Civil & Environm Engn Meguro Ku Tokyo 1528552 Japan;

    Natl Res Ctr Water Pollut Res Dept Giza 12622 Egypt;

  • 收录信息 美国《科学引文索引》(SCI);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Hydrogen and methane; Saline wastewater; Mono-ethylene glycol; Anaerobic digestion; Metabolites; Microbial dynamics;

    机译:氢气和甲烷;盐水;一乙二醇厌氧消化;代谢物微生物动力学;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号