...
首页> 外文期刊>Journal of Electronic Testing >Comparing Through-Silicon-Via (TSV) Void/Pinhole Defect Self-Test Methods
【24h】

Comparing Through-Silicon-Via (TSV) Void/Pinhole Defect Self-Test Methods

机译:硅通孔(TSV)空隙/针孔缺陷自检方法的比较

获取原文
获取原文并翻译 | 示例
           

摘要

Three methods have been proposed to test Through-Silicon-Vias (TSV) electrically prior to 3D integration. These test methods are (1) sense amplification; (2) leakage current monitor; and (3) capacitance bridge methods. These tests are aimed at detecting one or both of two failure types, pin-holes and voids. The test circuits measure capacitance and leakage current of the TSVs, and generate a 1 bit pass/fail signal. The outputs are streamed out through a scan chain. The test time is 10 μs for the leakage test and the sense amplification methods, and is 15 μs for the capacitive bridge method. All these methods can be implemented for test-before-stacking, which will increase assembled yield. Resolution, power and area of these TSV test circuits were compared. The performance of each circuit was studied at PVT corners. The IMEC TSV technology was assumed, and the designs were simulated using the 32 nm predicted device model. Without any failure, the TSV capacitance’s mean value is 37 fF, and its leakage resistance is higher than 850 MΩ. With respect to 37 fF standard capacitance, resolution for the sense amplification method is 3.3 fF (8.9%); it is 0.16 fF (0.4%) for the capacitance bridge method. Although the capacitance bridge method has relatively better resolution, it takes 4x area and 10x power than the other two, and is also more sensitive to PVT variation. Resolution of the leakage current monitor method is 10 MΩ (1.1%) with respect to its threshold 850 MΩ, and use 42.5aJ power in normal case. Sense amplification circuit can be modified to detect equivalent leakage resistance under 2KΩ.
机译:已经提出了三种方法来在3D集成之前进行电测试硅通孔(TSV)。这些测试方法是(1)有义扩增; (2)漏电流监测仪; (3)电容电桥方法。这些测试旨在检测两种故障类型(针孔和空隙)中的一种或两种。测试电路测量TSV的电容和泄漏电流,并生成1位通过/失败信号。输出通过扫描链流式传输。对于泄漏测试和感测放大方法,测试时间为10μs,对于电容电桥方法,测试时间为15μs。所有这些方法都可以用于堆叠前测试,这将提高组装良率。比较了这些TSV测试电路的分辨率,功率和面积。在PVT角落研究了每个电路的性能。假定采用IMEC TSV技术,并使用32 nm预测器件模型对设计进行仿真。没有任何故障,TSV电容的平均值为37 fF,其泄漏电阻高于850MΩ。对于37 fF标准电容,感测放大方法的分辨率为3.3 fF(8.9%);电容电桥方法为0.16 fF(0.4%)。尽管电容电桥方法具有相对较好的分辨率,但与其他两种方法相比,它占用的面积为4倍,功耗为10倍,并且对PVT变化更敏感。相对于其阈值850MΩ,泄漏电流监控器方法的分辨率为10MΩ(1.1%),通常情况下使用42.5aJ功率。可以修改检测放大电路,以检测2KΩ以下的等效泄漏电阻。

著录项

  • 来源
    《Journal of Electronic Testing》 |2012年第1期|p.27-38|共12页
  • 作者单位

    Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, NC, USA;

    Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, NC, USA;

    Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, NC, USA;

    Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, NC, USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    TSV; 3D stacking yield; On-chip capacitor bridge; Test-before-stacking;

    机译:TSV;3D堆叠良率;片上电容器电桥;堆叠前测试;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号