首页> 外文会议>3D System Integration, 2009. 3DIC 2009 >A route towards production-worthy 5 µm × 25 µm and 1 µm × 20 µm non-Bosch through-silicon-via (TSV) etch, TSV metrology, and TSV integration
【24h】

A route towards production-worthy 5 µm × 25 µm and 1 µm × 20 µm non-Bosch through-silicon-via (TSV) etch, TSV metrology, and TSV integration

机译:通往可用于生产的5 µm×25 µm和1 µm×20 µm非Bosch硅通孔(TSV)蚀刻,TSV计量和TSV集成的途径

获取原文

摘要

We report a process development route towards 300 mm production-worthy non-Bosch through-silicon-via (TSV) etch with critical dimensions and via spacing between 1–5 µm and aspect ratios (ARs) up to 20∶1 for 3D logic integration. This was performed on an experimental alpha-tool from Tokyo Electron: a magnetically enhanced capacitively coupled plasma etcher with a dipole ring magnet upgrade that aims to capture the strengths (anisotropicity, profile uniformity) while reducing the weaknesses (scalloping, undercut, residues) of a nominal Bosch process. Trending experiments were performed to understand key modulators that contribute to the control of sidewall taper and roughness, etched TSV volume and depth, mask undercut, local bowing effects, and within wafer (WIW) center-to-edge depth and profile uniformity. Selected process-of-records in fabricating TSVs with nominal sizes of 5 µm × 25 µm, 5 µm × 40 µm and 1 µm × 20 µm with ∼ 1 % WIW depth uniformity, negligible silicon scalloping/mask undercut, and good profile control were developed. These include vertical TSVs and tapered TSVs for different 3D wafer stacking applications. For TSV metrology, assessments were conducted using wafer thickness sensor technology (Tamar Technology, Inc) that is not limited by AR: an optical, non-invasive, and high throughput sensor that measures the etched depth of vias using backside IR illumination. In having a continuous 2kÅ TEOS oxide liner/100 Å Ta(TaN) barrier/5kÅ Cu seed stack enabled by TSV etch, Cu-filled TSVs of 3 µm × 20 µm and 5 µm × 25 µm were demonstrated.
机译:我们报告了一种工艺开发路线,该工艺朝着300毫米高生产价值的非Bosch硅通孔(TSV)蚀刻工艺进行,该工艺具有关键尺寸,通孔间距在1-5 µm之间,纵横比(AR)高达20∶1,用于3D逻辑集成。这是在Tokyo Electron的实验alpha工具上执行的:磁增强的电容耦合等离子体刻蚀机,带有偶极环形磁体升级版,旨在捕获强度(各向异性,轮廓均匀性),同时减少弱点(扇形,底切,残留物)标称的博世过程。进行趋势实验以了解关键调制器,这些调制器有助于控制侧壁锥度和粗糙度,蚀刻的TSV体积和深度,掩模底切,局部弯曲效应以及晶片(WIW)中心到边缘的深度和轮廓均匀性。在制造标称尺寸为5 µm×25 µm,5 µm×40 µm和1 µm×20 µm的TSV时具有一定的WIW深度均匀性,可忽略的硅扇贝/掩模底切,以及良好的轮廓控制发达。这些包括用于不同3D晶圆堆叠应用的垂直TSV和锥形TSV。对于TSV度量,使用不受AR限制的晶圆厚度传感器技术(Tamar Technology,Inc)进行评估:光学,非侵入性和高通量传感器,使用背面IR照明测量通孔的蚀刻深度。在具有通过TSV蚀刻实现的连续2kÅTEOS氧化物衬里/100ÅTa(TaN)阻挡层/5kÅCu晶种堆叠的过程中,展示了3 µm×20 µm和5 µm×25 µm的填充Cu的TSV。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号