首页> 外文期刊>Journal of Dynamic Systems, Measurement, and Control >Data-Weighting Based Discrete-Time Adaptive Iterative Learning Control for Nonsector Nonlinear Systems With Iteration-Varying Trajectory and Random Initial Condition
【24h】

Data-Weighting Based Discrete-Time Adaptive Iterative Learning Control for Nonsector Nonlinear Systems With Iteration-Varying Trajectory and Random Initial Condition

机译:具有变数轨迹和随机初始条件的非线性非线性系统的基于数据加权的离散时间自适应迭代学习控制

获取原文
获取原文并翻译 | 示例

摘要

In this paper, a new discrete-time adaptive iterative learning control (AILC) approach is presented to deal with nonsector nonlinearities by incorporating a recursive least-squares algorithm with a nonlinear data weighted coefficient. This scheme is also extended as a d-iteration-ahead adaptive iterative learning predictive control to address for multiple inputs multiple outputs (MIMO) nonlinear systems with unknown input gains. A major distinct feature of the presented methods is that the global stability result is obtained through Lyapunov analysis without assuming any linear growth condition on the nonlinearities. Another distinct feature is that the pointwise convergence of the presented methods is achieved over a finite interval without requiring any identical conditions on the initial states and reference trajectory.
机译:本文提出了一种新的离散时间自适应迭代学习控制(AILC)方法,该方法通过结合具有非线性数据加权系数的递归最小二乘算法来处理非扇区非线性。该方案还扩展为一种d迭代提前自适应迭代学习预测控制,以解决输入增益未知的多输入多输出(MIMO)非线性系统的问题。所提出方法的主要不同之处在于,通过Lyapunov分析获得了整体稳定性结果,而没有在非线性上假设任何线性增长条件。另一个独特的特征是,在有限的时间间隔内实现了所提出方法的逐点收敛,而在初始状态和参考轨迹上不需要任何相同条件。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号