首页> 外文期刊>Journal of database management >An Exploration of a Set of Entropy-Based Hybrid Splitting Methods for Splitting Methods for
【24h】

An Exploration of a Set of Entropy-Based Hybrid Splitting Methods for Splitting Methods for

机译:一类基于熵的混合分裂方法的探索

获取原文
获取原文并翻译 | 示例

摘要

Decision tree (DT) induction is among the more popular of the data mining techniques. An important component of DT induction algorithms is the splitting method, with the most commonly used method being based on the Conditional Entropy family. However, it is well known that there is no single splitting method that will give the best performance for all problem instances. In this paper, we develop and explore hybrid splitting methods from two entropy-based families: the Conditional Entropy family and another family that is based on the Class-Attribute Mutual Information (CAMI). We compare conventional splitting methods based on single measures with hybrid splitting methods based on multiple measures. The results suggest that the hybrid methods could be competitive in terms of classification accuracy and are thus worthy of future research.
机译:决策树(DT)归纳法是最流行的数据挖掘技术之一。 DT归纳算法的重要组成部分是拆分方法,最常用的方法是基于条件熵家族。但是,众所周知,没有一种拆分方法可以为所有问题实例提供最佳性能。在本文中,我们开发和探索了基于两个熵的家庭的混合分裂方法:条件熵家庭和另一个基于类属性互信息(CAMI)的家庭。我们将基于单一度量的常规拆分方法与基于多种度量的混合拆分方法进行了比较。结果表明,该混合方法在分类准确度方面可能具有竞争力,因此值得今后研究。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号