首页> 外文期刊>Journal of Crystal Growth >CVD growth of SiC on sapphire substrate and graphene formation from the epitaxial SiC
【24h】

CVD growth of SiC on sapphire substrate and graphene formation from the epitaxial SiC

机译:蓝宝石衬底上SiC的CVD生长和外延SiC形成的石墨烯

获取原文
获取原文并翻译 | 示例
           

摘要

6H-SiC epi-layer was grown on c-plane sapphire by chemical vapor deposition (CVD) and epitaxial graphene was grown on the SiC film using the thermal decomposition method. A thin (~300 nm) A1N was employed as a buffer layer since a direct growth on sapphire did not produce SiC. Raman spectroscopy, x-ray diffraction (XRD), and atomic force microscopy (AFM) confirmed the growth of high quality 6H-SiC on the AlN/sapphire at 1450℃. The effect of AlN growth method/condition (HVPE and MBE) on the quality of final SiC film and epitaxial graphene was explored. Raman and XRD 29-scan did not show any significant difference between the SiC films grown on HVPE-AlN and MBE-AlN. A sharper XRD rocking curve was observed on the SiC/HVPE-AlN but a smoother SiC was grown on the MBE-AlN. Graphitization of the SiC/AlN/sapphire was done at 1300-1400℃ under Ultra High Vacuum (UHV). The SiC on MBE-AlN survived at high temperatures (up to 1400℃) without cracking and graphene was grown on it. However, the SiC on HVPE-AlN cracked and peeled off at 1300℃ resulting in no formation of graphene. The signatures of graphene were clearly observed by Raman spectroscopy with the 2D-peak to G-peak intensity (I_(2D)/I_G) of approximately 2, the D-peak to G-peak intensity (I_D/I_G) of 0.4, and the 2D-peak width of 55 cm~(-1).
机译:通过化学气相沉积(CVD)在c面蓝宝石上生长6H-SiC外延层,并使用热分解方法在SiC膜上生长外延石墨烯。由于在蓝宝石上直接生长不会产生SiC,因此使用薄的(约300 nm)AlN作为缓冲层。拉曼光谱,X射线衍射(XRD)和原子力显微镜(AFM)证实了在1450℃AlN /蓝宝石上生长了高质量的6H-SiC。探索了AlN生长方法/条件(HVPE和MBE)对最终SiC膜和外延石墨烯质量的影响。拉曼和XRD 29扫描在HVPE-AlN和MBE-AlN上生长的SiC膜之间没有显示任何显着差异。在SiC / HVPE-AlN上观察到了更清晰的XRD摇摆曲线,但在MBE-AlN上生长了更光滑的SiC。 SiC / AlN /蓝宝石的石墨化是在1300-1400℃,超高真空(UHV)下进行的。 MBE-AlN上的SiC能够在高温(最高1400℃)下存活而不会破裂,并且在其上生长了石墨烯。然而,HVPE-AlN上的SiC在1300℃时开裂并剥落,因此没有形成石墨烯。通过拉曼光谱法可以清楚地观察到石墨烯的签名,其中2D峰至G峰强度(I_(2D)/ I_G)约为2,D峰至G峰强度(I_D / I_G)为0.4,并且2D峰值宽度为55 cm〜(-1)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号