首页> 外文期刊>Journal of Computing and Information Science in Engineering >On Generalized Jacobi-Bernstein Basis Transformation: Application of Multidegree Reduction of Bezier Curves and Surfaces
【24h】

On Generalized Jacobi-Bernstein Basis Transformation: Application of Multidegree Reduction of Bezier Curves and Surfaces

机译:广义Jacobi-Bernstein基变换的应用:Bezier曲线和曲面的多度约简的应用

获取原文
获取原文并翻译 | 示例

摘要

This paper formulates a new explicit expression for the generalized Jacobi polynomials (GJPs) in terms of Bernstein basis. We also establish and prove the basis transformation between the GJPs basis and Bernstein basis and vice versa. This transformation embeds the perfect least-square performance of the GJPs with the geometrical insight of the Bernstein form. Moreover, the GJPs with indexes corresponding to the number of endpoint constraints are the natural basis functions for least-square approximation of Bezier curves and surfaces. Application to multidegree reduction (MDR) of Bezier curves and surfaces in computer aided geometric design (CAGD) is given.
机译:本文以伯恩斯坦为基础,为广义雅可比多项式(GJPs)制定了新的显式表达式。我们还建立并证明了GJPs基础和Bernstein基础之间的基础转换,反之亦然。这种转换将伯恩斯坦形式的几何洞察力嵌入到GJP的完美最小二乘性能中。此外,索引对应于端点约束数量的GJP是Bezier曲线和曲面的最小二乘逼近的自然基础函数。给出了计算机辅助几何设计(CAGD)中Bezier曲线和曲面的多度降阶(MDR)的应用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号