首页> 外文期刊>Journal of computational science >Wavelet collocation method based on Legendre polynomials and its application in solving the stochastic fractional integro-differential equations
【24h】

Wavelet collocation method based on Legendre polynomials and its application in solving the stochastic fractional integro-differential equations

机译:基于Legendre多项式的小波搭配方法及其在求解随机分数积分 - 微分方程的应用

获取原文
获取原文并翻译 | 示例

摘要

This work is an extended version of the ICCS 2020 conference paper [1]. The paper aims to present an efficient numerical method to quantify the uncertainty in the solution of stochastic fractional integro-differential equations. The numerical method presented here is a wavelet collocation method based on Legendre polynomials, and their deterministic and stochastic operational matrix of integration. The operational matrices are used to convert the stochastic fractional integro-differential equation to a linear system of algebraic equations. The accuracy and efficiency of the proposed method are validated through numerical experiments. Moreover, the results are compared with the numerical methods based on the Gaussian radial basis function (GA RBF) and thin plate splines radial basis function (TBS RBF) to show the superiority of the proposed method. Finally, concerning the real-world application, a stock market model has been simulated and the results are demonstrated.
机译:这项工作是ICCS 2020会议论文的扩展版本[1]。 本文旨在提出一种有效的数值方法,以量化随机分数积分微分方程溶液中的不确定性。 这里呈现的数值方法是基于Legendre多项式的小波搭配方法,以及它们的确定性和随机运算矩阵的集成。 操作矩阵用于将随机分数积分 - 微分方程转换为代数方程的线性系统。 通过数值实验验证了所提出的方法的准确性和效率。 此外,将结果与基于高斯径向基函数(GA RBF)和薄板花键径向基函数(TBS RBF)的数值方法进行比较,以显示所提出的方法的优越性。 最后,关于现实世界的应用,已经模拟了股票市场模式,并证明了结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号