首页> 外文期刊>Applied numerical mathematics >Legendre wavelet collocation method combined with the Gauss-Jacobi quadrature for solving fractional delay-type integro-differential equations
【24h】

Legendre wavelet collocation method combined with the Gauss-Jacobi quadrature for solving fractional delay-type integro-differential equations

机译:勒让德小波搭配方法结合高斯-雅各比积分求解分数阶延迟型积分微分方程

获取原文
获取原文并翻译 | 示例

摘要

In this work, we present a collocation method based on the Legendre wavelet combined with the Gauss-Jacobi quadrature formula for solving a class of fractional delay-type integro-differential equations. The problem is considered with either initial or boundary conditions and the fractional derivative is described in the Caputo sense. First, an approximation of the unknown solution is considered in terms of the Legendre wavelet basis functions. Then, we substitute this approximation and its derivatives into the considered equation. The Caputo derivative of the unknown function is approximated using the Gauss-Jacobi quadrature formula. By collocating the obtained residual at the well-known shifted Chebyshev points, we get a system of nonlinear algebraic equations. In order to obtain a continuous solution, some conditions are added to the resulting system. Some error bounds are given for the Legendre wavelet approximation of an arbitrary function. Finally, some examples are included to show the efficiency and accuracy of this new technique.
机译:在这项工作中,我们提出了一种基于勒让德小波并结合高斯-雅各比正交公式的搭配方法,用于求解一类分数阶延迟型积分微分方程。考虑到初始条件或边界条件的问题,分数导数在Caputo意义上进行了描述。首先,根据勒让德小波基函数考虑未知解的近似值。然后,我们将此近似值及其导数代入所考虑的方程式。未知函数的Caputo导数使用Gauss-Jacobi正交公式近似。通过将获得的残差配置在已知的偏移的Chebyshev点上,我们得到了一个非线性代数方程组。为了获得连续的溶液,将某些条件添加到生成的系统中。对于任意函数的勒让德小波逼近,给出了一些误差范围。最后,包括一些示例以显示该新技术的效率和准确性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号